These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 32270317)

  • 1. MRI features and texture analysis for the early prediction of therapeutic response to neoadjuvant chemoradiotherapy and tumor recurrence of locally advanced rectal cancer.
    Park H; Kim KA; Jung JH; Rhie J; Choi SY
    Eur Radiol; 2020 Aug; 30(8):4201-4211. PubMed ID: 32270317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC).
    Crimì F; Capelli G; Spolverato G; Bao QR; Florio A; Milite Rossi S; Cecchin D; Albertoni L; Campi C; Pucciarelli S; Stramare R
    Radiol Med; 2020 Dec; 125(12):1216-1224. PubMed ID: 32410063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application value of texture analysis of magnetic resonance images in prediction of neoadjuvant chemoradiotherapy efficacy for rectal cancer].
    Shu Z; Fang S; Ding Z; Mao D; Pang P; Gong X
    Zhonghua Wei Chang Wai Ke Za Zhi; 2018 Sep; 21(9):1051-1058. PubMed ID: 30269327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment MRI-detected extramural venous invasion as a prognostic and predictive biomarker for neoadjuvant chemoradiotherapy in non-metastatic rectal cancer: a propensity score matched analysis.
    Yang SY; Bae H; Seo N; Han K; Han YD; Cho MS; Hur H; Min BS; Kim NK; Lee KY; Lim JS
    Eur Radiol; 2024 Jun; 34(6):3686-3698. PubMed ID: 37994967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of efficacy of neoadjuvant chemoradiotherapy for rectal cancer: the value of texture analysis of magnetic resonance images.
    Shu Z; Fang S; Ye Q; Mao D; Cao H; Pang P; Gong X
    Abdom Radiol (NY); 2019 Nov; 44(11):3775-3784. PubMed ID: 30852633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of progression-free survival for locally advanced rectal cancer by MRI after neoadjuvant chemoradiotherapy and total mesorectal excision].
    Zhang JX; Yang Z; Fan P; Zhang JJ; Xin L; Hou LN; Du XS; Yang XT
    Zhonghua Zhong Liu Za Zhi; 2018 Feb; 40(2):121-126. PubMed ID: 29502372
    [No Abstract]   [Full Text] [Related]  

  • 7. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI.
    Zou HH; Yu J; Wei Y; Wu JF; Xu Q
    J Magn Reson Imaging; 2019 Mar; 49(3):885-893. PubMed ID: 30079601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-weighted magnetic resonance imaging in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy.
    De Felice F; Magnante AL; Musio D; Ciolina M; De Cecco CN; Rengo M; Laghi A; Tombolini V
    Eur J Surg Oncol; 2017 Jul; 43(7):1324-1329. PubMed ID: 28363512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Resonance Texture Analysis in Identifying Complete Pathological Response to Neoadjuvant Treatment in Locally Advanced Rectal Cancer.
    Aker M; Ganeshan B; Afaq A; Wan S; Groves AM; Arulampalam T
    Dis Colon Rectum; 2019 Feb; 62(2):163-170. PubMed ID: 30451764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance based texture parameters as potential imaging biomarkers for predicting long-term survival in locally advanced rectal cancer treated by chemoradiotherapy.
    Jalil O; Afaq A; Ganeshan B; Patel UB; Boone D; Endozo R; Groves A; Sizer B; Arulampalam T
    Colorectal Dis; 2017 Apr; 19(4):349-362. PubMed ID: 27538267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.
    Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D
    Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Value of volumetric and textural analysis in predicting the treatment response in patients with locally advanced rectal cancer.
    Karahan Şen NP; Aksu A; Kaya GÇ
    Ann Nucl Med; 2020 Dec; 34(12):960-967. PubMed ID: 32951129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor Volume as Predictor of Pathologic Complete Response Following Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer.
    Lutsyk M; Awawda M; Gourevich K; Ben Yosef R
    Am J Clin Oncol; 2021 Sep; 44(9):482-486. PubMed ID: 34269693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer.
    Ferrari R; Mancini-Terracciano C; Voena C; Rengo M; Zerunian M; Ciardiello A; Grasso S; Mare' V; Paramatti R; Russomando A; Santacesaria R; Satta A; Solfaroli Camillocci E; Faccini R; Laghi A
    Eur J Radiol; 2019 Sep; 118():1-9. PubMed ID: 31439226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.
    Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW
    Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features.
    Qin S; Liu K; Chen Y; Zhou Y; Zhao W; Yan R; Xin P; Zhu Y; Wang H; Lang N
    Sci Rep; 2024 Sep; 14(1):21927. PubMed ID: 39304726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.
    Bellini D; Carbone I; Rengo M; Vicini S; Panvini N; Caruso D; Iannicelli E; Tombolini V; Laghi A
    Tomography; 2022 Aug; 8(4):2059-2072. PubMed ID: 36006071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-treatment ADC image-based random forest classifier for identifying resistant rectal adenocarcinoma to neoadjuvant chemoradiotherapy.
    Yang C; Jiang ZK; Liu LH; Zeng MS
    Int J Colorectal Dis; 2020 Jan; 35(1):101-107. PubMed ID: 31786652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response prediction of neoadjuvant chemoradiation therapy in locally advanced rectal cancer using CT-based fractal dimension analysis.
    Tochigi T; Kamran SC; Parakh A; Noda Y; Ganeshan B; Blaszkowsky LS; Ryan DP; Allen JN; Berger DL; Wo JY; Hong TS; Kambadakone A
    Eur Radiol; 2022 Apr; 32(4):2426-2436. PubMed ID: 34643781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.