These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes. Zifarelli G J Physiol; 2015 Sep; 593(18):4139-50. PubMed ID: 26036722 [TBL] [Abstract][Full Text] [Related]
10. A role for chloride transport in lysosomal protein degradation. Wartosch L; Stauber T Autophagy; 2010 Jan; 6(1):158-9. PubMed ID: 20104020 [TBL] [Abstract][Full Text] [Related]
11. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Graves AR; Curran PK; Smith CL; Mindell JA Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189 [TBL] [Abstract][Full Text] [Related]
12. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. Kasper D; Planells-Cases R; Fuhrmann JC; Scheel O; Zeitz O; Ruether K; Schmitt A; Poët M; Steinfeld R; Schweizer M; Kornak U; Jentsch TJ EMBO J; 2005 Mar; 24(5):1079-91. PubMed ID: 15706348 [TBL] [Abstract][Full Text] [Related]
13. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation. Weinert S; Jabs S; Supanchart C; Schweizer M; Gimber N; Richter M; Rademann J; Stauber T; Kornak U; Jentsch TJ Science; 2010 Jun; 328(5984):1401-3. PubMed ID: 20430974 [TBL] [Abstract][Full Text] [Related]
15. CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Yoshikawa M; Uchida S; Ezaki J; Rai T; Hayama A; Kobayashi K; Kida Y; Noda M; Koike M; Uchiyama Y; Marumo F; Kominami E; Sasaki S Genes Cells; 2002 Jun; 7(6):597-605. PubMed ID: 12059962 [TBL] [Abstract][Full Text] [Related]
16. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. Schrecker M; Korobenko J; Hite RK Elife; 2020 Aug; 9():. PubMed ID: 32749217 [TBL] [Abstract][Full Text] [Related]
17. Preferential association with ClC-3 permits sorting of ClC-4 into endosomal compartments. Guzman RE; Bungert-Plümke S; Franzen A; Fahlke C J Biol Chem; 2017 Nov; 292(46):19055-19065. PubMed ID: 28972156 [TBL] [Abstract][Full Text] [Related]
18. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. van den Hove MF; Croizet-Berger K; Jouret F; Guggino SE; Guggino WB; Devuyst O; Courtoy PJ Endocrinology; 2006 Mar; 147(3):1287-96. PubMed ID: 16306076 [TBL] [Abstract][Full Text] [Related]
19. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Hara-Chikuma M; Wang Y; Guggino SE; Guggino WB; Verkman AS Biochem Biophys Res Commun; 2005 Apr; 329(3):941-6. PubMed ID: 15752747 [TBL] [Abstract][Full Text] [Related]
20. Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes. McCarty MF; Iloki-Assanga S; Lujan LML; DiNicolantonio JJ Med Hypotheses; 2019 Feb; 123():125-129. PubMed ID: 30696582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]