These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32270512)

  • 1. Chloride accumulation in endosomes and lysosomes: facts checked in mice.
    Schwappach B
    EMBO J; 2020 May; 39(9):e104812. PubMed ID: 32270512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Recurrent Gain-of-Function Mutation in CLCN6, Encoding the ClC-6 Cl
    Polovitskaya MM; Barbini C; Martinelli D; Harms FL; Cole FS; Calligari P; Bocchinfuso G; Stella L; Ciolfi A; Niceta M; Rizza T; Shinawi M; Sisco K; Johannsen J; Denecke J; Carrozzo R; Wegner DJ; Kutsche K; Tartaglia M; Jentsch TJ
    Am J Hum Genet; 2020 Dec; 107(6):1062-1077. PubMed ID: 33217309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.
    Novarino G; Weinert S; Rickheit G; Jentsch TJ
    Science; 2010 Jun; 328(5984):1398-401. PubMed ID: 20430975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell biology. Think vesicular chloride.
    Smith AJ; Schwappach B
    Science; 2010 Jun; 328(5984):1364-5. PubMed ID: 20538939
    [No Abstract]   [Full Text] [Related]  

  • 5. ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation.
    Hara-Chikuma M; Yang B; Sonawane ND; Sasaki S; Uchida S; Verkman AS
    J Biol Chem; 2005 Jan; 280(2):1241-7. PubMed ID: 15504734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters.
    Jentsch TJ
    J Physiol; 2007 Feb; 578(Pt 3):633-40. PubMed ID: 17110406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. West Syndrome Caused By a Chloride/Proton Exchange-Uncoupling CLCN6 Mutation Related to Autophagic-Lysosomal Dysfunction.
    He H; Cao X; Yin F; Wu T; Stauber T; Peng J
    Mol Neurobiol; 2021 Jun; 58(6):2990-2999. PubMed ID: 33590434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
    Zifarelli G
    J Physiol; 2015 Sep; 593(18):4139-50. PubMed ID: 26036722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for chloride transport in lysosomal protein degradation.
    Wartosch L; Stauber T
    Autophagy; 2010 Jan; 6(1):158-9. PubMed ID: 20104020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes.
    Graves AR; Curran PK; Smith CL; Mindell JA
    Nature; 2008 Jun; 453(7196):788-92. PubMed ID: 18449189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration.
    Kasper D; Planells-Cases R; Fuhrmann JC; Scheel O; Zeitz O; Ruether K; Schmitt A; Poët M; Steinfeld R; Schweizer M; Kornak U; Jentsch TJ
    EMBO J; 2005 Mar; 24(5):1079-91. PubMed ID: 15706348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysosomal pathology and osteopetrosis upon loss of H+-driven lysosomal Cl- accumulation.
    Weinert S; Jabs S; Supanchart C; Schweizer M; Gimber N; Richter M; Rademann J; Stauber T; Kornak U; Jentsch TJ
    Science; 2010 Jun; 328(5984):1401-3. PubMed ID: 20430974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling endosomal CLC chloride/proton exchange causes severe neurodegeneration.
    Weinert S; Gimber N; Deuschel D; Stuhlmann T; Puchkov D; Farsi Z; Ludwig CF; Novarino G; López-Cayuqueo KI; Planells-Cases R; Jentsch TJ
    EMBO J; 2020 May; 39(9):e103358. PubMed ID: 32118314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis.
    Yoshikawa M; Uchida S; Ezaki J; Rai T; Hayama A; Kobayashi K; Kida Y; Noda M; Koike M; Uchiyama Y; Marumo F; Kominami E; Sasaki S
    Genes Cells; 2002 Jun; 7(6):597-605. PubMed ID: 12059962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1.
    Schrecker M; Korobenko J; Hite RK
    Elife; 2020 Aug; 9():. PubMed ID: 32749217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential association with ClC-3 permits sorting of ClC-4 into endosomal compartments.
    Guzman RE; Bungert-Plümke S; Franzen A; Fahlke C
    J Biol Chem; 2017 Nov; 292(46):19055-19065. PubMed ID: 28972156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland.
    van den Hove MF; Croizet-Berger K; Jouret F; Guggino SE; Guggino WB; Devuyst O; Courtoy PJ
    Endocrinology; 2006 Mar; 147(3):1287-96. PubMed ID: 16306076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule.
    Hara-Chikuma M; Wang Y; Guggino SE; Guggino WB; Verkman AS
    Biochem Biophys Res Commun; 2005 Apr; 329(3):941-6. PubMed ID: 15752747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes.
    McCarty MF; Iloki-Assanga S; Lujan LML; DiNicolantonio JJ
    Med Hypotheses; 2019 Feb; 123():125-129. PubMed ID: 30696582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.