These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32270674)

  • 1. WO
    Staerz A; Somacescu S; Epifani M; Kida T; Weimar U; Barsan N
    ACS Sens; 2020 Jun; 5(6):1624-1633. PubMed ID: 32270674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi Similar Routes of NO
    Yang L; Marikutsa A; Rumyantseva M; Konstantinova E; Khmelevsky N; Gaskov A
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors.
    Akamatsu T; Itoh T; Izu N; Shin W
    Sensors (Basel); 2013 Sep; 13(9):12467-81. PubMed ID: 24048338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.
    Tran VD; Nguyen DH; Nguyen VD; Nguyen VH
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4828-37. PubMed ID: 26816341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia sensing by closely packed WO
    Wang CY; Zhang X; Rong Q; Hou NN; Yu HQ
    Chemosphere; 2018 Aug; 204():202-209. PubMed ID: 29656156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proof of Concept for Operando Infrared Spectroscopy Investigation of Light-Excited Metal Oxide-Based Gas Sensors.
    Wang XX; Junker B; Ewald C; Weimar U; Guo X; Barsan N
    J Phys Chem Lett; 2022 Apr; 13(16):3631-3635. PubMed ID: 35435691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films.
    Su PG; Peng SL
    Talanta; 2015 Jan; 132():398-405. PubMed ID: 25476324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic Integration of Machine Learning with Microstructure/Composition-Designed SnO
    Nam Y; Kim KB; Kim SH; Park KH; Lee MI; Cho JW; Lim J; Hwang IS; Kang YC; Hwang JH
    ACS Sens; 2024 Jan; 9(1):182-194. PubMed ID: 38207118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Microscopic Proof of the Fermi Level Pinning Gas-Sensing Mechanism: The Case of Platinum-Loaded WO
    Staerz A; Bahri M; Geyik U; Brinkmann H; Weimar U; Ersen O; Barsan N
    J Phys Chem Lett; 2020 Jan; 11(1):166-171. PubMed ID: 31834997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the Mechanism of Working SnO
    Elger AK; Hess C
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15057-15061. PubMed ID: 31448864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials.
    Marikutsa A; Rumyantseva M; Konstantinova EA; Gaskov A
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33917353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal effects associated with the Raman spectroscopy of WO3 gas-sensor materials.
    Garcia-Sanchez RF; Ahmido T; Casimir D; Baliga S; Misra P
    J Phys Chem A; 2013 Dec; 117(50):13825-31. PubMed ID: 24087971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO
    Yu W; Shen Z; Peng F; Lu Y; Ge M; Fu X; Sun Y; Chen X; Dai N
    RSC Adv; 2019 Mar; 9(14):7723-7728. PubMed ID: 35521212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Sensing Mechanism of a Metal-Oxide Solid Solution via
    Spagnoli E; Valt M; Gaiardo A; Fabbri B; Guidi V
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds.
    Nayak AK; Ghosh R; Santra S; Guha PK; Pradhan D
    Nanoscale; 2015 Aug; 7(29):12460-73. PubMed ID: 26134476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Computational Study of a Chemiresistive NO
    Bian W; Dou H; Wang X; Li C; Zhang Y; Gong C; Sun N; Liu S; Li P; Jing Q; Liu B
    ACS Sens; 2023 Feb; 8(2):748-756. PubMed ID: 36749024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humidity-tolerant and highly sensitive gas sensor for hydrogen sulfide based on WO
    Deng Z; Wu Z; Liu X; Chen Z; Sun Y; Dai N; Ge M
    RSC Adv; 2024 May; 14(21):15039-15047. PubMed ID: 38720982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving methane gas sensing performance of flower-like SnO
    Xue D; Wang Y; Cao J; Sun G; Zhang Z
    Talanta; 2019 Jul; 199():603-611. PubMed ID: 30952304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous WO
    Xu H; Gao J; Li M; Zhao Y; Zhang M; Zhao T; Wang L; Jiang W; Zhu G; Qian X; Fan Y; Yang J; Luo W
    Front Chem; 2019; 7():266. PubMed ID: 31058141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.