These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 32270766)
1. Encapsulation of metal oxide nanoparticles inside metal-organic frameworks via surfactant-assisted nanoconfined space. Wang S; Yu Y; Yu J; Wang T; Wang P; Li Y; Zhang X; Zhang L; Hu Z; Chen J; Fu Y; Qi W Nanotechnology; 2020 Apr; 31(25):255604. PubMed ID: 32270766 [TBL] [Abstract][Full Text] [Related]
2. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Li G; Zhao S; Zhang Y; Tang Z Adv Mater; 2018 Dec; 30(51):e1800702. PubMed ID: 30247789 [TBL] [Abstract][Full Text] [Related]
3. Silica-Protection-Assisted Encapsulation of Cu Li B; Ma JG; Cheng P Angew Chem Int Ed Engl; 2018 Jun; 57(23):6834-6837. PubMed ID: 29520923 [TBL] [Abstract][Full Text] [Related]
4. Molecular Scalpel to Chemically Cleave Metal-Organic Frameworks for Induced Phase Transition. Zhou X; Dong J; Zhu Y; Liu L; Jiao Y; Li H; Han Y; Davey K; Xu Q; Zheng Y; Qiao SZ J Am Chem Soc; 2021 May; 143(17):6681-6690. PubMed ID: 33887909 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of 2D Metal-Organic Framework Nanosheets with Highly Colloidal Stability and High Yield through Coordination Modulation. Zhou H; Zhang L; Wang G; Zhang Y; Wang X; Li M; Fan F; Li Y; Wang T; Zhang X; Fu Y ACS Appl Mater Interfaces; 2021 Aug; 13(33):39755-39762. PubMed ID: 34380312 [TBL] [Abstract][Full Text] [Related]
6. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Zhang W; Lu G; Cui C; Liu Y; Li S; Yan W; Xing C; Chi YR; Yang Y; Huo F Adv Mater; 2014 Jun; 26(24):4056-60. PubMed ID: 24710716 [TBL] [Abstract][Full Text] [Related]
7. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. Tang L; Shi J; Wu H; Zhang S; Liu H; Zou H; Wu Y; Zhao J; Jiang Z Nanotechnology; 2017 Sep; 28(36):365604. PubMed ID: 28617249 [TBL] [Abstract][Full Text] [Related]
8. Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. Gao Z; Qin Y Acc Chem Res; 2017 Sep; 50(9):2309-2316. PubMed ID: 28787132 [TBL] [Abstract][Full Text] [Related]
9. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Das R; Pachfule P; Banerjee R; Poddar P Nanoscale; 2012 Jan; 4(2):591-9. PubMed ID: 22143166 [TBL] [Abstract][Full Text] [Related]
10. Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. Ling JL; Chen K; Wu CD Research (Wash D C); 2021; 2021():9835935. PubMed ID: 34409301 [TBL] [Abstract][Full Text] [Related]
11. Structural and Morphological Transformation of Two-Dimensional Metal-Organic Frameworks Accompanied by Controlled Preparation Using the Spray Method. Wang S; Ma J; Zhai X; Zhang X; Fan F; Wang T; Li Y; Zhang L; Fu Y Langmuir; 2020 Jul; 36(26):7392-7399. PubMed ID: 32493015 [TBL] [Abstract][Full Text] [Related]
12. Confinement of Ultrasmall Cu/ZnO An B; Zhang J; Cheng K; Ji P; Wang C; Lin W J Am Chem Soc; 2017 Mar; 139(10):3834-3840. PubMed ID: 28209054 [TBL] [Abstract][Full Text] [Related]
13. Encapsulation of Mono- or Bimetal Nanoparticles Inside Metal-Organic Frameworks via In situ Incorporation of Metal Precursors. Chen L; Chen X; Liu H; Li Y Small; 2015 Jun; 11(22):2642-8. PubMed ID: 25644718 [TBL] [Abstract][Full Text] [Related]
14. Space-confined growth of nanoscale metal-organic frameworks/Pd in hollow mesoporous silica for highly efficient catalytic reduction of 4-nitrophenol. Huang X; Lin D; Duan P; Chen H; Zhao Y; Yang W; Pan Q; Tian X J Colloid Interface Sci; 2023 Jan; 629(Pt B):55-64. PubMed ID: 36150248 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal-Organic Frameworks. Fu Y; Zhai X; Wang S; Shao L; Bai XJ; Su ZS; Liu YL; Zhang LY; Chen JY Inorg Chem; 2021 Nov; 60(21):16447-16454. PubMed ID: 34657422 [TBL] [Abstract][Full Text] [Related]
16. Location determination of metal nanoparticles relative to a metal-organic framework. Chen YZ; Gu B; Uchida T; Liu J; Liu X; Ye BJ; Xu Q; Jiang HL Nat Commun; 2019 Aug; 10(1):3462. PubMed ID: 31371708 [TBL] [Abstract][Full Text] [Related]
17. A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal-organic frameworks. Lin XY; Li YH; Qi MY; Tang ZR; Jiang HL; Xu YJ Nanoscale Horiz; 2020 Mar; 5(4):714-719. PubMed ID: 32226984 [TBL] [Abstract][Full Text] [Related]
18. High Loading of Pd Nanoparticles by Interior Functionalization of MOFs for Heterogeneous Catalysis. Gole B; Sanyal U; Banerjee R; Mukherjee PS Inorg Chem; 2016 Mar; 55(5):2345-54. PubMed ID: 26882438 [TBL] [Abstract][Full Text] [Related]
19. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Wang Z; Tanabe KK; Cohen SM Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of Metal-Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity. Kou J; Sun LB ACS Appl Mater Interfaces; 2018 Apr; 10(14):12051-12059. PubMed ID: 29537251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]