These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32270797)

  • 1. Biomimetic fabrication of highly ordered laminae-trestle-laminae structured copper aero-sponge.
    Huang J; Zeng J; Wang H; Etim UJ; Liang B; Meteku EB; Li H; Wang Y; Qiu Z; Rood MJ; Yan Z
    Nanoscale; 2020 Apr; 12(16):8982-8990. PubMed ID: 32270797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous structure for rapidly controlling noncompressible hemorrhage.
    Li P; Cao L; Sang F; Zhang B; Meng Z; Pan L; Hao J; Yang X; Ma Z; Shi C
    Biomater Adv; 2022 Mar; 134():112698. PubMed ID: 35581074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobically modified chitin/halloysite nanotubes composite sponges for high efficiency oil-water separation.
    Zhao X; Luo Y; Tan P; Liu M; Zhou C
    Int J Biol Macromol; 2019 Jul; 132():406-415. PubMed ID: 30936014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired hollow PDMS sponge for enhanced oil-water separation.
    Shin JH; Heo JH; Jeon S; Park JH; Kim S; Kang HW
    J Hazard Mater; 2019 Mar; 365():494-501. PubMed ID: 30466047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and mechanical characterization of a polyvinyl alcohol sponge for tissue engineering applications.
    Karimi A; Navidbakhsh M; Faghihi S
    Perfusion; 2014 May; 29(3):231-7. PubMed ID: 24259496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of a lattice structure inspired by glass sponge.
    Li QW; Sun BH
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36322985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites.
    Yin S; Wang H; Li J; Ritchie RO; Xu J
    J Mech Behav Biomed Mater; 2019 Jun; 94():10-18. PubMed ID: 30851656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypyrrole/silver coaxial nanowire aero-sponges for temperature-independent stress sensing and stress-triggered Joule heating.
    He W; Li G; Zhang S; Wei Y; Wang J; Li Q; Zhang X
    ACS Nano; 2015 Apr; 9(4):4244-51. PubMed ID: 25811954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.
    Huang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17144-50. PubMed ID: 25198145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption.
    Feng Y; Zong D; Hou Y; Yin X; Zhang S; Duan L; Si Y; Jia Y; Ding B
    J Colloid Interface Sci; 2021 Jul; 593():59-66. PubMed ID: 33744552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wood-Inspired Compressible Superhydrophilic Sponge for Efficient Removal of Micron-Sized Water Droplets from Viscous Oils.
    Li X; Yang Z; Peng Y; Zhang F; Lin M; Zhang J; Lv Q; Dong Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11789-11802. PubMed ID: 35195410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge.
    Karimi A; Navidbakhsh M; Beigzadeh B
    Tissue Cell; 2014 Feb; 46(1):97-102. PubMed ID: 24405852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials.
    Pham VH; Dickerson JH
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14181-8. PubMed ID: 25039789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation.
    Luo Y; Jiang S; Xiao Q; Chen C; Li B
    Sci Rep; 2017 Aug; 7(1):7162. PubMed ID: 28769065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Superhydrophobic Sponge with Hierarchical Structure as an Efficient and Recyclable Oil Absorbent.
    Liu Q; Meng K; Ding K; Wang Y
    Chempluschem; 2015 Sep; 80(9):1435-1439. PubMed ID: 31973362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.
    Wan YJ; Zhu PL; Yu SH; Sun R; Wong CP; Liao WH
    Small; 2018 Jul; 14(27):e1800534. PubMed ID: 29847702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.
    Duan B; Gao H; He M; Zhang L
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19933-42. PubMed ID: 25347002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(dimethylsiloxane)/graphene oxide composite sponge: a robust and reusable adsorbent for efficient oil/water separation.
    Zhao J; Chen H; Ye H; Zhang B; Xu L
    Soft Matter; 2019 Dec; 15(45):9224-9232. PubMed ID: 31647491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents.
    Guan H; Cheng Z; Wang X
    ACS Nano; 2018 Oct; 12(10):10365-10373. PubMed ID: 30272949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiscale study on the structural and mechanical properties of the luffa sponge from Luffa cylindrica plant.
    Chen Q; Shi Q; Gorb SN; Li Z
    J Biomech; 2014 Apr; 47(6):1332-9. PubMed ID: 24636532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.