These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 32271301)

  • 1. Unilateral progressive epitheliopathy after LASIK.
    Moshirfar M; Hastings JP
    J Cataract Refract Surg; 2020 Apr; 46(4):646-651. PubMed ID: 32271301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy.
    Wilson SE
    Ophthalmology; 2001 Jun; 108(6):1082-7. PubMed ID: 11382633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-LASIK corneal epithelial irregularities October consultation #1.
    Moshirfar M; Bundogji N
    J Cataract Refract Surg; 2021 Oct; 47(10):1377. PubMed ID: 34544088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-domain optical coherence tomography epithelial and flap thickness mapping in femtosecond laser-assisted in situ keratomileusis.
    Rocha KM; Krueger RR
    Am J Ophthalmol; 2014 Aug; 158(2):293-301.e1. PubMed ID: 24792107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial ingrowth after late traumatic femtosecond laser-assisted laser in situ keratomileusis flap dislocation.
    Prat D; Berger Y; Avni-Zauberman N; Matani A; Barequet IS
    J Cataract Refract Surg; 2019 Dec; 45(12):1830-1832. PubMed ID: 31856997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of visual acuity, flap thickness, and optical density after laser in situ keratomileusis performed with a femtosecond laser.
    Parafita-Fernandez A; Garcia-Gonzalez M; Gros-Otero J; Alvarez-Rementería Capelo L; Blázquez Sánchez V; Teus M
    J Cataract Refract Surg; 2020 Feb; 46(2):260-266. PubMed ID: 32126040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.
    Mian SI; Li AY; Dutta S; Musch DC; Shtein RM
    J Cataract Refract Surg; 2009 Dec; 35(12):2092-8. PubMed ID: 19969213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Randomized Comparative Study of Topography-Guided Versus Wavefront-Optimized FS-LASIK for Correcting Myopia and Myopic Astigmatism.
    Zhang Y; Chen Y
    J Refract Surg; 2019 Sep; 35(9):575-582. PubMed ID: 31498415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine lattice lines on the corneal surface after laser in situ keratomileusis (LASIK).
    Carpel EF; Carlson KH; Shannon S
    Am J Ophthalmol; 2000 Mar; 129(3):379-80. PubMed ID: 10704556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual outcomes after femtosecond laser in situ keratomileusis flap complications.
    Jadav DS; Desai N; Taylor KR; Caldwell MC; Panday VA; Reilly CD
    J Cataract Refract Surg; 2015 Nov; 41(11):2487-92. PubMed ID: 26703500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced Higher-order aberrations after Laser In Situ Keratomileusis (LASIK) Performed with Wavefront-Guided IntraLase Femtosecond Laser in moderate to high Astigmatism.
    Al-Zeraid FM; Osuagwu UL
    BMC Ophthalmol; 2016 Mar; 16():29. PubMed ID: 27000109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late-onset epithelial ingrowth after laser in situ keratomileusis.
    Todani A; Melki SA
    J Cataract Refract Surg; 2009 Nov; 35(11):2022-3. PubMed ID: 19878839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Epi-LASIK and off-flap Epi-LASIK for the treatment of low and moderate myopia.
    Kalyvianaki MI; Kymionis GD; Kounis GA; Panagopoulou SI; Grentzelos MA; Pallikaris IG
    Ophthalmology; 2008 Dec; 115(12):2174-80. PubMed ID: 19041475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia: Surgical outcomes.
    Kim J; Choi SH; Lim DH; Yang CM; Yoon GJ; Chung TY
    J Cataract Refract Surg; 2019 Jul; 45(7):959-965. PubMed ID: 31196580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of corneal epithelial remodeling on visual outcomes of topography-guided femtosecond LASIK.
    Saleh S; Epp LJ; Manche EE
    J Cataract Refract Surg; 2022 Oct; 48(10):1155-1161. PubMed ID: 35333817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia.
    Rocha KM; Kagan R; Smith SD; Krueger RR
    Am J Ophthalmol; 2009 Jun; 147(6):966-72, 972.e1. PubMed ID: 19327748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical study on combining femtosecond thin- flap and LASIK with the Triple-A profile for high myopia correction.
    Li K; Zhang CW; Hong DJ; Wu J; Yao YS
    BMC Ophthalmol; 2019 May; 19(1):107. PubMed ID: 31077191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of myopia and myopic astigmatism by femtosecond laser in situ keratomileusis.
    Řeháková T; Veliká V; Jirásková N
    Cesk Slov Oftalmol; 2019; 75(2):65-71. PubMed ID: 31537074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thin-flap laser in situ keratomileusis with femtosecond-laser technology.
    Kymionis GD; Kontadakis GA; Grentzelos MA; Panagopoulou SI; Stojanovic N; Kankariya VP; Henderson BA; Pallikaris IG
    J Cataract Refract Surg; 2013 Sep; 39(9):1366-71. PubMed ID: 23820304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.