These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32271586)

  • 1. Non-Invasive Nanoscale Potentiometry and Ballistic Transport in Epigraphene Nanoribbons.
    De Cecco A; Prudkovskiy VS; Wander D; Ganguly R; Berger C; de Heer WA; Courtois H; Winkelmann CB
    Nano Lett; 2020 May; 20(5):3786-3790. PubMed ID: 32271586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic tracks in graphene nanoribbons.
    Aprojanz J; Power SR; Bampoulis P; Roche S; Jauho AP; Zandvliet HJW; Zakharov AA; Tegenkamp C
    Nat Commun; 2018 Oct; 9(1):4426. PubMed ID: 30356162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum Resistance Anisotropy of Epitaxial Graphene on SiC.
    Momeni Pakdehi D; Aprojanz J; Sinterhauf A; Pierz K; Kruskopf M; Willke P; Baringhaus J; Stöckmann JP; Traeger GA; Hohls F; Tegenkamp C; Wenderoth M; Ahlers FJ; Schumacher HW
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):6039-6045. PubMed ID: 29377673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A first principles scanning tunneling potentiometry study of an opaque graphene grain boundary in the ballistic transport regime.
    Bevan KH
    Nanotechnology; 2014 Oct; 25(41):415701. PubMed ID: 25248965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exceptional ballistic transport in epitaxial graphene nanoribbons.
    Baringhaus J; Ruan M; Edler F; Tejeda A; Sicot M; Taleb-Ibrahimi A; Li AP; Jiang Z; Conrad EH; Berger C; Tegenkamp C; de Heer WA
    Nature; 2014 Feb; 506(7488):349-54. PubMed ID: 24499819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Interference in Ballistic Graphene Nanoconstrictions.
    Baringhaus J; Settnes M; Aprojanz J; Power SR; Jauho AP; Tegenkamp C
    Phys Rev Lett; 2016 May; 116(18):186602. PubMed ID: 27203337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic features in the electrochemical potential drop across a graphene grain boundary.
    Hoffmann-Vogel R
    Nanotechnology; 2014 Dec; 25(48):480501. PubMed ID: 25397732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate induced nanoscale resistance variation in epitaxial graphene.
    Sinterhauf A; Traeger GA; Momeni Pakdehi D; Schädlich P; Willke P; Speck F; Seyller T; Tegenkamp C; Pierz K; Schumacher HW; Wenderoth M
    Nat Commun; 2020 Jan; 11(1):555. PubMed ID: 31992696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bottom-up growth of edge specific graphene nanoribbons.
    Nevius MS; Wang F; Mathieu C; Barrett N; Sala A; Menteş TO; Locatelli A; Conrad EH
    Nano Lett; 2014 Nov; 14(11):6080-6. PubMed ID: 25254434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the Conductance of Electronically Decoupled Graphene Nanoribbons.
    Jacobse PH; Mangnus MJJ; Zevenhuizen SJM; Swart I
    ACS Nano; 2018 Jul; 12(7):7048-7056. PubMed ID: 29939719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study.
    Baringhaus J; Edler F; Tegenkamp C
    J Phys Condens Matter; 2013 Oct; 25(39):392001. PubMed ID: 23945317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically Precise PdSe
    Nguyen GD; Oyedele AD; Haglund A; Ko W; Liang L; Puretzky AA; Mandrus D; Xiao K; Li AP
    ACS Nano; 2020 Feb; 14(2):1951-1957. PubMed ID: 32023412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local work function on graphene nanoribbons.
    Rothhardt D; Kimouche A; Klamroth T; Hoffmann-Vogel R
    Beilstein J Nanotechnol; 2024; 15():1125-1131. PubMed ID: 39224533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.
    Tapasztó L; Dobrik G; Lambin P; Biró LP
    Nat Nanotechnol; 2008 Jul; 3(7):397-401. PubMed ID: 18654562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature ballistic transport in III-nitride heterostructures.
    Matioli E; Palacios T
    Nano Lett; 2015 Feb; 15(2):1070-5. PubMed ID: 25614931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance analysis and implementation of a scanning tunneling potentiometry setup: Toward low-noise and high-sensitivity measurements of the electrochemical potential.
    Marković T; Huang W; Gambardella P; Stepanow S
    Rev Sci Instrum; 2021 Oct; 92(10):103707. PubMed ID: 34717380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions.
    Bock C; Weingart S; Karaissaridis E; Kunze U; Speck F; Seyller T
    Nanotechnology; 2012 Oct; 23(39):395203. PubMed ID: 22971877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons.
    Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG
    ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.