These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32271859)

  • 1. Coupling amorphous cobalt hydroxide nanoflakes on Sr
    He B; Tan K; Gong Y; Wang R; Wang H; Zhao L
    Nanoscale; 2020 Apr; 12(16):9048-9057. PubMed ID: 32271859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa
    Zhang Z; He B; Chen L; Wang H; Wang R; Zhao L; Gong Y
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38032-38041. PubMed ID: 30360054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Alkaline Water-Splitting Activity of Mesoporous 3D Heterostructures: An Amorphous-Shell@Crystalline-Core Nano-Assembly of Co-Ni-Phosphate Ultrathin-Nanosheets and V- Doped Cobalt-Nitride Nanowires.
    Singh TI; Maibam A; Cha DC; Yoo S; Babarao R; Lee SU; Lee S
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201311. PubMed ID: 35666047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Water Splitting Actualized through an Electrochemistry-Induced Hetero-Structured Antiperovskite/(Oxy)Hydroxide Hybrid.
    She S; Zhu Y; Tahini HA; Wu X; Guan D; Chen Y; Dai J; Chen Y; Tang W; Smith SC; Wang H; Zhou W; Shao Z
    Small; 2020 Dec; 16(51):e2006800. PubMed ID: 33251694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable La Deficiency Engineering within Perovskite Oxides for Enhanced Overall Water Splitting.
    Xu X; Guo K; Yu X
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiFe
    Wu Z; Zou Z; Huang J; Gao F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26283-26292. PubMed ID: 30009602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zirconium-Regulation-Induced Bifunctionality in 3D Cobalt-Iron Oxide Nanosheets for Overall Water Splitting.
    Huang L; Chen D; Luo G; Lu YR; Chen C; Zou Y; Dong CL; Li Y; Wang S
    Adv Mater; 2019 Jul; 31(28):e1901439. PubMed ID: 31148279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing Pure Phase Tungsten-Based Bimetallic Carbide Nanosheet as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Chen J; Ren B; Cui H; Wang C
    Small; 2020 Jun; 16(23):e1907556. PubMed ID: 32378323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow Ru Incorporated Amorphous Cobalt-Based Oxides for High-Current-Density Overall Water Splitting in Alkaline and Seawater Media.
    Wu D; Chen D; Zhu J; Mu S
    Small; 2021 Oct; 17(39):e2102777. PubMed ID: 34390190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.
    Tang Y; Fang X; Zhang X; Fernandes G; Yan Y; Yan D; Xiang X; He J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36762-36771. PubMed ID: 28991435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis.
    Shamloofard M; Shahrokhian S
    Inorg Chem; 2023 Jan; 62(3):1178-1191. PubMed ID: 36607645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional Catalyst Derived from Sulfur-Doped VMoO
    Wang J; Tran DT; Chang K; Prabhakaran S; Kim DH; Kim NH; Lee JH
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42944-42956. PubMed ID: 34473465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting.
    Jiang N; You B; Sheng M; Sun Y
    Angew Chem Int Ed Engl; 2015 May; 54(21):6251-4. PubMed ID: 25900260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposites Based on Ruthenium Nanoparticles Supported on Cobalt and Nitrogen-Codoped Graphene Nanosheets as Bifunctional Catalysts for Electrochemical Water Splitting.
    He T; Peng Y; Li Q; Lu JE; Liu Q; Mercado R; Chen Y; Nichols F; Zhang Y; Chen S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46912-46919. PubMed ID: 31755691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast fabrication of nickel sulfide film on Ni foam for efficient overall water splitting.
    Ren G; Hao Q; Mao J; Liang L; Liu H; Liu C; Zhang J
    Nanoscale; 2018 Sep; 10(36):17347-17353. PubMed ID: 30198033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-Tuned MoS
    Rana AK; Jeong MH; Noh YI; Park H; Baik JM; Choi KJ
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18248-18260. PubMed ID: 35413181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NiFe Hydroxide Supported on Hierarchically Porous Nickel Mesh as a High-Performance Bifunctional Electrocatalyst for Water Splitting at Large Current Density.
    Wang PC; Wan L; Lin YQ; Wang BG
    ChemSusChem; 2019 Sep; 12(17):4038-4045. PubMed ID: 31310446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt Iron Hydroxide as a Precious Metal-Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting.
    Babar P; Lokhande A; Shin HH; Pawar B; Gang MG; Pawar S; Kim JH
    Small; 2018 Feb; 14(7):. PubMed ID: 29251422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient and Stable Catalyst Based on Co(OH)
    Wang Z; Ji S; Liu F; Wang H; Wang X; Wang Q; Pollet BG; Wang R
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29791-29798. PubMed ID: 31343158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO
    Yang M; Zhao M; Yuan J; Luo J; Zhang J; Lu Z; Chen D; Fu X; Wang L; Liu C
    Small; 2022 Apr; 18(14):e2106554. PubMed ID: 35150071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.