These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32271882)

  • 41. Parkinson's Disease-Associated Mutant LRRK2-Mediated Inhibition of miRNA Activity is Antagonized by TRIM32.
    Gonzalez-Cano L; Menzl I; Tisserand J; Nicklas S; Schwamborn JC
    Mol Neurobiol; 2018 Apr; 55(4):3490-3498. PubMed ID: 28508149
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons.
    Schapansky J; Khasnavis S; DeAndrade MP; Nardozzi JD; Falkson SR; Boyd JD; Sanderson JB; Bartels T; Melrose HL; LaVoie MJ
    Neurobiol Dis; 2018 Mar; 111():26-35. PubMed ID: 29246723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular Insights and Functional Implication of LRRK2 Dimerization.
    Civiero L; Russo I; Bubacco L; Greggio E
    Adv Neurobiol; 2017; 14():107-121. PubMed ID: 28353281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leucine-rich repeat kinase 2 and Parkinson's disease.
    Kang UB; Marto JA
    Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27723254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers.
    Wang S; Liu Z; Ye T; Mabrouk OS; Maltbie T; Aasly J; West AB
    Acta Neuropathol Commun; 2017 Nov; 5(1):86. PubMed ID: 29166931
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Concatenation of 14-3-3 with partner phosphoproteins as a tool to study their interaction.
    Tugaeva KV; Kalacheva DI; Cooley RB; Strelkov SV; Sluchanko NN
    Sci Rep; 2019 Oct; 9(1):15007. PubMed ID: 31628352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies.
    Dzamko N; Gysbers AM; Bandopadhyay R; Bolliger MF; Uchino A; Zhao Y; Takao M; Wauters S; van de Berg WD; Takahashi-Fujigasaki J; Nichols RJ; Holton JL; Murayama S; Halliday GM
    Mov Disord; 2017 Mar; 32(3):423-432. PubMed ID: 27911006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies.
    Wile DJ; Agarwal PA; Schulzer M; Mak E; Dinelle K; Shahinfard E; Vafai N; Hasegawa K; Zhang J; McKenzie J; Neilson N; Strongosky A; Uitti RJ; Guttman M; Zabetian CP; Ding YS; Adam M; Aasly J; Wszolek ZK; Farrer M; Sossi V; Stoessl AJ
    Lancet Neurol; 2017 May; 16(5):351-359. PubMed ID: 28336296
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions.
    Drolet RE; Sanders JM; Kern JT
    J Neurogenet; 2011 Dec; 25(4):140-51. PubMed ID: 22077787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression.
    Zhu Y; Wang C; Yu M; Cui J; Liu L; Xu Z
    Protein Cell; 2013 Sep; 4(9):711-21. PubMed ID: 27023913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parkinson's Disease: A Traffic Jam?
    Clague MJ; Rochin L
    Curr Biol; 2016 Apr; 26(8):R332-4. PubMed ID: 27115692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LRRK2: from kinase to GTPase to microtubules and back.
    Blanca Ramírez M; Lara Ordóñez AJ; Fdez E; Hilfiker S
    Biochem Soc Trans; 2017 Feb; 45(1):141-146. PubMed ID: 28202667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of LRRK2 kinase activity in the pathogenesis of Parkinson's disease.
    Greggio E
    Biochem Soc Trans; 2012 Oct; 40(5):1058-62. PubMed ID: 22988865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2.
    Hamm M; Bailey R; Shaw G; Yen SH; Lewis J; Giasson BI
    J Neurosci Res; 2015 Oct; 93(10):1567-80. PubMed ID: 26123245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Centrosomal cohesion deficits as cellular biomarker in lymphoblastoid cell lines from LRRK2 Parkinson's disease patients.
    Fernández B; Lara Ordóñez AJ; Fdez E; Mutez E; Comptdaer T; Leghay C; Kreisler A; Simonin C; Vandewynckel L; Defebvre L; Destée A; Bleuse S; Taymans JM; Chartier-Harlin MC; Hilfiker S
    Biochem J; 2019 Oct; 476(19):2797-2813. PubMed ID: 31527116
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibitor treatment of peripheral mononuclear cells from Parkinson's disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker.
    Perera G; Ranola M; Rowe DB; Halliday GM; Dzamko N
    Sci Rep; 2016 Aug; 6():31391. PubMed ID: 27503089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Mechanism of SARS-CoV-2 Nucleocapsid Protein Recognition by the Human 14-3-3 Proteins.
    Tugaeva KV; Hawkins DEDP; Smith JLR; Bayfield OW; Ker DS; Sysoev AA; Klychnikov OI; Antson AA; Sluchanko NN
    J Mol Biol; 2021 Apr; 433(8):166875. PubMed ID: 33556408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners.
    Sluchanko NN; Tugaeva KV; Greive SJ; Antson AA
    Sci Rep; 2017 Sep; 7(1):12014. PubMed ID: 28931924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in structural studies of 14-3-3 protein complexes.
    Sluchanko NN
    Adv Protein Chem Struct Biol; 2022; 130():289-324. PubMed ID: 35534110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A biophysical and structural analysis of the interaction of BLNK with 14-3-3 proteins.
    Soini L; Leysen S; Davis J; Ottmann C
    J Struct Biol; 2020 Dec; 212(3):107662. PubMed ID: 33176192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.