These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32271975)

  • 21. Nitrogen-Doped Pt/C Electrocatalysts with Enhanced Activity and Stability toward the Oxygen Reduction Reaction.
    Choi SI; Lee SU; Choi R; Park JT; Han SW
    Chempluschem; 2013 Oct; 78(10):1252-1257. PubMed ID: 31986775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts.
    Kim HY; Cho S; Sa YJ; Hwang SM; Park GG; Shin TJ; Jeong HY; Yim SD; Joo SH
    Small; 2016 Oct; 12(38):5347-5353. PubMed ID: 27515995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical investigations of the oxygen reduction reaction on Pt(111).
    Keith JA; Jerkiewicz G; Jacob T
    Chemphyschem; 2010 Sep; 11(13):2779-94. PubMed ID: 20726030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced Platinum-Based Oxygen Reduction Electrocatalysts for Fuel Cells.
    Huang L; Zaman S; Tian X; Wang Z; Fang W; Xia BY
    Acc Chem Res; 2021 Jan; 54(2):311-322. PubMed ID: 33411505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms for enhanced performance of platinum-based electrocatalysts in proton exchange membrane fuel cells.
    Su L; Jia W; Li CM; Lei Y
    ChemSusChem; 2014 Feb; 7(2):361-78. PubMed ID: 24449484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Hydrophobicity Engineering of Pt-Based Noble Metal Aerogels by Ionic Liquids toward Enhanced Electrocatalytic Oxygen Reduction.
    Yuan H; Gao W; Ye J; Ma T; Ma F; Wen D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21143-21151. PubMed ID: 37092815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.
    Gan L; Rudi S; Cui C; Heggen M; Strasser P
    Small; 2016 Jun; 12(23):3189-96. PubMed ID: 27152487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel-Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability.
    Godínez-Salomón F; Mendoza-Cruz R; Arellano-Jimenez MJ; Jose-Yacaman M; Rhodes CP
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18660-18674. PubMed ID: 28497954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defect Engineering for Fuel-Cell Electrocatalysts.
    Li W; Wang D; Zhang Y; Tao L; Wang T; Zou Y; Wang Y; Chen R; Wang S
    Adv Mater; 2020 May; 32(19):e1907879. PubMed ID: 32176409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts.
    Fu G; Jiang X; Gong M; Chen Y; Tang Y; Lin J; Lu T
    Nanoscale; 2014 Jul; 6(14):8226-34. PubMed ID: 24930902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts.
    Feng Y; Shao Q; Ji Y; Cui X; Li Y; Zhu X; Huang X
    Sci Adv; 2018 Jul; 4(7):eaap8817. PubMed ID: 30027113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction.
    Guo H; Liu X; Bai C; Chen Y; Wang L; Zheng M; Dong Q; Peng DL
    ChemSusChem; 2015 Feb; 8(3):486-94. PubMed ID: 25505002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A universal and facile way for the development of superior bifunctional electrocatalysts for oxygen reduction and evolution reactions utilizing the synergistic effect.
    Zhu Y; Su C; Xu X; Zhou W; Ran R; Shao Z
    Chemistry; 2014 Nov; 20(47):15533-42. PubMed ID: 25267542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.
    Xia T; Liu J; Wang S; Wang C; Sun Y; Gu L; Wang R
    ACS Appl Mater Interfaces; 2016 May; 8(17):10841-9. PubMed ID: 27093304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Fe Substitution into LaCoO
    Wang M; Han B; Deng J; Jiang Y; Zhou M; Lucero M; Wang Y; Chen Y; Yang Z; N'Diaye AT; Wang Q; Xu ZJ; Feng Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5682-5686. PubMed ID: 30694640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction.
    Dong Y; Wu Y; Liu M; Li J
    ChemSusChem; 2013 Oct; 6(10):2016-21. PubMed ID: 24039153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Overview on Pt
    Sarkar S; Peter SC
    Chem Asian J; 2021 May; 16(10):1184-1197. PubMed ID: 33749999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction.
    Han J; Bian J; Sun C
    Research (Wash D C); 2020; 2020():9512763. PubMed ID: 32864623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine.
    Zorko M; Farinazzo Bergamo Dias Martins P; Connell JG; Lopes PP; Markovic NM; Stamenkovic VR; Strmcnik D
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3369-3376. PubMed ID: 33404211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.