These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32272464)
1. Decoding hand movements from human EEG to control a robotic arm in a simulation environment. Schwarz A; Höller MK; Pereira J; Ofner P; Müller-Putz GR J Neural Eng; 2020 May; 17(3):036010. PubMed ID: 32272464 [TBL] [Abstract][Full Text] [Related]
2. Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm. Mondini V; Kobler RJ; Sburlea AI; Müller-Putz GR J Neural Eng; 2020 Aug; 17(4):046031. PubMed ID: 32679573 [TBL] [Abstract][Full Text] [Related]
3. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals. Pereira J; Kobler R; Ofner P; Schwarz A; Müller-Putz GR J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130267 [TBL] [Abstract][Full Text] [Related]
4. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy. Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607 [No Abstract] [Full Text] [Related]
5. Decoding Hand Movement Types and Kinematic Information From Electroencephalogram. Xu B; Wang Y; Deng L; Wu C; Zhang W; Li H; Song A IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1744-1755. PubMed ID: 34428142 [TBL] [Abstract][Full Text] [Related]
6. Classification of different reaching movements from the same limb using EEG. Shiman F; López-Larraz E; Sarasola-Sanz A; Irastorza-Landa N; Spüler M; Birbaumer N; Ramos-Murguialday A J Neural Eng; 2017 Aug; 14(4):046018. PubMed ID: 28467325 [TBL] [Abstract][Full Text] [Related]
7. Brain oscillatory signatures of motor tasks. Ramos-Murguialday A; Birbaumer N J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484 [TBL] [Abstract][Full Text] [Related]
8. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients. Casey A; Azhar H; Grzes M; Sakel M Disabil Rehabil Assist Technol; 2021 Jul; 16(5):525-537. PubMed ID: 31711336 [TBL] [Abstract][Full Text] [Related]
9. Combining frequency and time-domain EEG features for classification of self-paced reach-and-grasp actions. Schwarz A; Pereira J; Lindner L; Muller-Putz GR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3036-3041. PubMed ID: 31946528 [TBL] [Abstract][Full Text] [Related]
10. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
11. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques. Úbeda A; Azorín JM; Chavarriaga R; R Millán JD J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603 [TBL] [Abstract][Full Text] [Related]
12. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients. Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866 [TBL] [Abstract][Full Text] [Related]
13. Unimanual and Bimanual Reach-and-Grasp Actions Can Be Decoded From Human EEG. Schwarz A; Pereira J; Kobler R; Muller-Putz GR IEEE Trans Biomed Eng; 2020 Jun; 67(6):1684-1695. PubMed ID: 31545707 [TBL] [Abstract][Full Text] [Related]
14. Decoding Imagined 3D Arm Movement Trajectories From EEG to Control Two Virtual Arms-A Pilot Study. Korik A; Sosnik R; Siddique N; Coyle D Front Neurorobot; 2019; 13():94. PubMed ID: 31798438 [No Abstract] [Full Text] [Related]
15. Decoding movement frequencies and limbs based on steady-state movement-related rhythms from noninvasive EEG. Wei Y; Wang X; Luo R; Mai X; Li S; Meng J J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37816342 [No Abstract] [Full Text] [Related]
16. Shared Three-Dimensional Robotic Arm Control Based on Asynchronous BCI and Computer Vision. Zhou Y; Yu T; Gao W; Huang W; Lu Z; Huang Q; Li Y IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3163-3175. PubMed ID: 37498753 [TBL] [Abstract][Full Text] [Related]
17. EEG-based BCI system for decoding finger movements within the same hand. Alazrai R; Alwanni H; Daoud MI Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057 [TBL] [Abstract][Full Text] [Related]
18. Detection of Movement-Related Brain Activity Associated with Hand and Tongue Movements from Single-Trial Around-Ear EEG. Gulyás D; Jochumsen M Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338748 [TBL] [Abstract][Full Text] [Related]
19. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing. Mondini V; Sburlea AI; Müller-Putz GR Sci Rep; 2024 Feb; 14(1):4714. PubMed ID: 38413782 [TBL] [Abstract][Full Text] [Related]
20. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. Jochumsen M; Niazi IK; Mrachacz-Kersting N; Jiang N; Farina D; Dremstrup K J Neural Eng; 2015 Oct; 12(5):056003. PubMed ID: 26214339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]