BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32272535)

  • 1. Electrophysiological and Pharmacological Characteristics of Triggered Activity Elicited in Guinea-Pig Pulmonary Vein Myocardium.
    Takahara A; Sugimoto T; Kitamura T; Takeda K; Tsuneoka Y; Namekata I; Tanaka H
    J Pharmacol Sci; 2011; 115(2):176-181. PubMed ID: 32272535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological and pharmacological characteristics of triggered activity elicited in guinea-pig pulmonary vein myocardium.
    Takahara A; Sugimoto T; Kitamura T; Takeda K; Tsuneoka Y; Namekata I; Tanaka H
    J Pharmacol Sci; 2011; 115(2):176-81. PubMed ID: 21258174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological effects of the class Ic antiarrhythmic drug pilsicainide on the guinea-pig pulmonary vein myocardium.
    Takahara A; Takeda K; Tsuneoka Y; Hagiwara M; Namekata I; Tanaka H
    J Pharmacol Sci; 2012; 118(4):506-11. PubMed ID: 22466963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulmonary vein bigeminy: electrophysiological characteristics and results of catheter ablation.
    Reithmann C; Dorwarth U; Gerth A; Hahnefeld A; Remp T; Steinbeck G; Hoffmann E
    J Interv Card Electrophysiol; 2002 Dec; 7(3):233-41. PubMed ID: 12510134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary vein myocardium as a possible pharmacological target for the treatment of atrial fibrillation.
    Takahara A; Hagiwara M; Namekata I; Tanaka H
    J Pharmacol Sci; 2014; 126(1):1-7. PubMed ID: 25242082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary Vein Myocardium as a Possible Pharmacological Target for the Treatment of Atrial Fibrillation.
    Takahara A; Hagiwara M; Namekata I; Tanaka H
    J Pharmacol Sci; 2014 Aug; ():. PubMed ID: 25152009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permissive role of reduced inwardly-rectifying potassium current density in the automaticity of the guinea pig pulmonary vein myocardium.
    Tsuneoka Y; Irie M; Tanaka Y; Sugimoto T; Kobayashi Y; Kusakabe T; Kato K; Hamaguchi S; Namekata I; Tanaka H
    J Pharmacol Sci; 2017 Apr; 133(4):195-202. PubMed ID: 28410965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological effects of the antiarrhythmic drug bepridil on the guinea-pig pulmonary vein myocardium.
    Takahara A; Takeda K; Hagiwara M; Tanaka H
    Biol Pharm Bull; 2013; 36(2):311-5. PubMed ID: 23370360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the persistent Na
    Irie M; Hiiro H; Hamaguchi S; Namekata I; Tanaka H
    J Pharmacol Sci; 2019 Sep; 141(1):9-16. PubMed ID: 31521490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological and pharmacological properties of the pulmonary vein myocardium.
    Namekata I; Tsuneoka Y; Tanaka H
    Biol Pharm Bull; 2013; 36(1):2-7. PubMed ID: 23302630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous pulmonary vein myocardial cell repolarization implications for reentry and triggered activity.
    Miyauchi Y; Hayashi H; Miyauchi M; Okuyama Y; Mandel WJ; Chen PS; Karagueuzian HS
    Heart Rhythm; 2005 Dec; 2(12):1339-45. PubMed ID: 16360087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic left atrial volume overload abbreviates the action potential duration of the canine pulmonary vein myocardium via activation of IK channel.
    Nouchi H; Takahara A; Nakamura H; Namekata I; Sugimoto T; Tsuneoka Y; Takeda K; Tanaka T; Shigenobu K; Sugiyama A; Tanaka H
    Eur J Pharmacol; 2008 Nov; 597(1-3):81-5. PubMed ID: 18804461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation.
    Patterson E; Po SS; Scherlag BJ; Lazzara R
    Heart Rhythm; 2005 Jun; 2(6):624-31. PubMed ID: 15922271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of alpha- and beta-adrenoceptors in the automaticity of the isolated guinea pig pulmonary vein myocardium.
    Irie M; Tsuneoka Y; Shimobayashi M; Hasegawa N; Tanaka Y; Mochizuki S; Ichige S; Hamaguchi S; Namekata I; Tanaka H
    J Pharmacol Sci; 2017 Apr; 133(4):247-253. PubMed ID: 28410967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [3-d mapping of pulmonary veins using a multipolar basket catheter. Implications for catheter ablation of atrial fibrillation].
    Arentz T; Von Rosenthal J; Blum T; Bürkle G; Stockinger J; Kalusche D
    Herz; 2003 Nov; 28(7):566-74. PubMed ID: 14689116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of antiarrhythmic to inotropic activity and antiarrhythmic qualities of the optical isomers of verapamil.
    Raschack M
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Sep; 294(3):285-91. PubMed ID: 1004639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic and clinical electrophysiology of pulmonary vein ectopy.
    de Bakker JM; Ho SY; Hocini M
    Cardiovasc Res; 2002 May; 54(2):287-94. PubMed ID: 12062334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology of the thoracic veins and left atrium in paroxysmal atrial fibrillation initiated by superior caval vein ectopy.
    Huang BH; Wu MH; Tsao HM; Tai CT; Lee KT; Lin YJ; Hsieh MH; Lee SH; Chen YJ; Kuo JY; Chen SA
    J Cardiovasc Electrophysiol; 2005 Apr; 16(4):411-7. PubMed ID: 15828887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducibility of abnormal automaticity and triggered activity in myocardial sleeves of canine pulmonary veins.
    Wang TM; Luk HN; Sheu JR; Wu HP; Chiang CE
    Int J Cardiol; 2005 Sep; 104(1):59-66. PubMed ID: 16137511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: implication for the genesis of atrial fibrillation.
    Chen YJ; Chen SA; Chang MS; Lin CI
    Cardiovasc Res; 2000 Nov; 48(2):265-73. PubMed ID: 11054473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.