These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32272614)

  • 1. Continuous-Wave Laser-Induced Transfer of Metal Nanoparticles to Arbitrary Polymer Substrates.
    Lim J; Kim Y; Shin J; Lee Y; Shin W; Qu W; Hwang E; Park S; Hong S
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective sintering of metal nanoparticle ink for maskless fabrication of an electrode micropattern using a spatially modulated laser beam by a digital micromirror device.
    An K; Hong S; Han S; Lee H; Yeo J; Ko SH
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2786-90. PubMed ID: 24471931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear-Assisted Laser Transfer of Metal Nanoparticle Ink to an Elastomer Substrate.
    Shin W; Lim J; Lee Y; Park S; Kim H; Cho H; Shin J; Yoon Y; Lee H; Kim HJ; Han S; Ko SH; Hong S
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30544907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.
    Hong S; Yeo J; Kim G; Kim D; Lee H; Kwon J; Lee H; Lee P; Ko SH
    ACS Nano; 2013 Jun; 7(6):5024-31. PubMed ID: 23731244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.
    Liu YK; Lee MT
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14576-82. PubMed ID: 25076124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropatterning of Metal Nanoparticle Ink by Laser-Induced Thermocapillary Flow.
    Park S; Kwon J; Lim J; Shin W; Lee Y; Lee H; Kim HJ; Han S; Yeo J; Ko SH; Hong S
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30135357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Fabrication of Printed Electronics Devices through Continuous Wave Laser-Induced Forward Transfer.
    Sopeña P; Arrese J; González-Torres S; Fernández-Pradas JM; Cirera A; Serra P
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29412-29417. PubMed ID: 28832108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors.
    Lee D; Paeng D; Park HK; Grigoropoulos CP
    ACS Nano; 2014 Oct; 8(10):9807-14. PubMed ID: 25130917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Transformative Gold Patterning through Selective Laser Refining of Cyanide.
    Lim J; Ham J; Lee W; Hwang E; Lee WC; Hong S
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.
    Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH
    PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics.
    Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.
    Zhou W; Bai S; Ma Y; Ma D; Hou T; Shi X; Hu A
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24887-92. PubMed ID: 27560607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates.
    Zacharatos F; Theodorakos I; Karvounis P; Tuohy S; Braz N; Melamed S; Kabla A; de la Vega F; Andritsos K; Hatziapostolou A; Karnakis D; Zergioti I
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30384412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review.
    Hwang E; Hong J; Yoon J; Hong S
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Heater Fabrication Using Amino Acid-Based Ink and Laser-Direct Writing.
    Koo S
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern.
    Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M
    Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maskless Patterning of Biodegradable Conductors by Selective Laser Sintering of Microparticle Inks and Its Application in Flexible Transient Electronics.
    Feng S; Cao S; Tian Z; Zhu H; Kong D
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45844-45852. PubMed ID: 31718133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green Synthesis of Nanoparticles Using Bio-Inspired Systems and Electrically Conductive Pattern Fabrication through Laser-Direct Writing.
    Koo S
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts.
    Roy NK; Behera D; Dibua OG; Foong CS; Cullinan MA
    Microsyst Nanoeng; 2019; 5():64. PubMed ID: 34567614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.