These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 32272638)
21. The Effect of EBM Process Parameters on Porosity and Microstructure of Ti-5Al-5Mo-5V-1Cr-1Fe Alloy. Kurzynowski T; Madeja M; Dziedzic R; Kobiela K Scanning; 2019; 2019():2903920. PubMed ID: 31065312 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting. Kanazawa M; Iwaki M; Minakuchi S; Nomura N J Prosthet Dent; 2014 Dec; 112(6):1441-7. PubMed ID: 25258261 [TBL] [Abstract][Full Text] [Related]
23. A Study of the Structural Characteristics of Titanium Alloy Products Manufactured Using Additive Technologies by Combining the Selective Laser Melting and Direct Metal Deposition Methods. Samodurova M; Logachev I; Shaburova N; Samoilova O; Radionova L; Zakirov R; Pashkeev K; Myasoedov V; Trofimov E Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597287 [TBL] [Abstract][Full Text] [Related]
24. The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters. Phutela C; Aboulkhair NT; Tuck CJ; Ashcroft I Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887981 [TBL] [Abstract][Full Text] [Related]
25. A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP-Ti and EBM manufactured Ti64 gyroid scaffolds. Ataee A; Li Y; Wen C Acta Biomater; 2019 Oct; 97():587-596. PubMed ID: 31398474 [TBL] [Abstract][Full Text] [Related]
26. Properties of a porous Ti-6Al-4V implant with a low stiffness for biomedical application. Li X; Wang CT; Zhang WG; Li YC Proc Inst Mech Eng H; 2009 Feb; 223(2):173-8. PubMed ID: 19278194 [TBL] [Abstract][Full Text] [Related]
27. The Effects of Hot Isostatic Pressing (HIP) and Heat Treatment on the Microstructure and Mechanical Behavior of Electron Beam-Melted (EBM) Ti-6Al-4V Alloy and Its Susceptibility to Hydrogen. Lulu-Bitton N; Navi NU; Haroush S; Sabatani E; Kostirya N; Tiferet E; Ganor YI; Omesi O; Agronov G; Eliaz N Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930215 [TBL] [Abstract][Full Text] [Related]
28. Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V). Benzing J; Hrabe N; Quinn T; White R; Rentz R; Ahlfors M Mater Lett; 2019; 257():. PubMed ID: 32116397 [TBL] [Abstract][Full Text] [Related]
29. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895 [TBL] [Abstract][Full Text] [Related]
30. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting. Mohammad A; Alahmari AM; Mohammed MK; Renganayagalu RK; Moiduddin K Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772572 [TBL] [Abstract][Full Text] [Related]
31. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting. Baitimerov R; Lykov P; Zherebtsov D; Radionova L; Shultc A; Prashanth KG Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735932 [TBL] [Abstract][Full Text] [Related]
32. High-Cycle Fatigue Behavior and Corresponding Microscale Deformation Mechanisms of Metastable Ti55511 Alloy with A Basket-Weave Microstructure. Luo H; Yuan W; Xiang W; Deng H; Yin H; Chen L; Cao S Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295212 [TBL] [Abstract][Full Text] [Related]
33. Modeling the Role of Epitaxial Grain Structure of the Prior β Phase and Associated Fiber Texture on the Strength Characteristics of Ti-6Al-4V Produced via Additive Manufacturing. Sangid MD; Nicolas A; Kapoor K; Fodran E; Madsen J Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429559 [TBL] [Abstract][Full Text] [Related]
34. Measurement of the Anisotropic Dynamic Elastic Constants of Additive Manufactured and Wrought Ti6Al4V Alloys. Tevet O; Svetlizky D; Harel D; Barkay Z; Geva D; Eliaz N Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057356 [TBL] [Abstract][Full Text] [Related]
35. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties. Ter Haar GM; Becker TH Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079 [TBL] [Abstract][Full Text] [Related]
36. Impact of grain orientation and phase on Volta potential differences in an additively manufactured titanium alloy. Benzing JT; Maryon OO; Hrabe N; Davis PH; Hurley MF; DelRio FW AIP Adv; 2021; 11(2):. PubMed ID: 34249471 [TBL] [Abstract][Full Text] [Related]
37. Mapping the Tray of Electron Beam Melting of Ti-6Al-4V: Properties and Microstructure. Tiferet E; Ganor M; Zolotaryov D; Garkun A; Hadjadj A; Chonin M; Ganor Y; Noiman D; Halevy I; Tevet O; Yeheskel O Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067683 [TBL] [Abstract][Full Text] [Related]
38. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
39. Effect of powder oxidation on the impact toughness of electron beam melt Ti-6Al-4V. Grell WA; Solis-Ramos E; Clark E; Lucon E; Garboczi EJ; Predecki PK; Loftus Z; Kumosa M Acta Mater; 2017 Oct; 17():. PubMed ID: 38496266 [TBL] [Abstract][Full Text] [Related]
40. Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM). Gruber K; Mackiewicz A; Stopyra W; Dziedzic R; Kurzynowski T Acta Bioeng Biomech; 2019; 21(4):157-168. PubMed ID: 32022797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]