These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 32272658)

  • 1. The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer.
    Alfarouk KO; Ahmed SBM; Ahmed A; Elliott RL; Ibrahim ME; Ali HS; Wales CC; Nourwali I; Aljarbou AN; Bashir AHH; Alhoufie STS; Alqahtani SS; Cardone RA; Fais S; Harguindey S; Reshkin SJ
    Cancers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Sodium Hydrogen Exchanger 1 in Dysregulation of Proton Dynamics and Reprogramming of Cancer Metabolism as a Sequela.
    Cardone RA; Alfarouk KO; Elliott RL; Alqahtani SS; Ahmed SBM; Aljarbou AN; Greco MR; Cannone S; Reshkin SJ
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance.
    White KA; Grillo-Hill BK; Barber DL
    J Cell Sci; 2017 Feb; 130(4):663-669. PubMed ID: 28202602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism.
    Iorio J; Petroni G; Duranti C; Lastraioli E
    Bioelectricity; 2019 Sep; 1(3):188-200. PubMed ID: 34471821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression.
    Vaupel P; Multhoff G
    Adv Exp Med Biol; 2020; 1232():169-176. PubMed ID: 31893407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactic Acidosis in the Presence of Glucose Diminishes Warburg Effect in Lung Adenocarcinoma Cells.
    Prado-Garcia H; Campa-Higareda A; Romero-Garcia S
    Front Oncol; 2020; 10():807. PubMed ID: 32596143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and its sequelae in cancer evolution and therapy.
    Gillies RJ; Gatenby RA
    Cancer J; 2015; 21(2):88-96. PubMed ID: 25815848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding.
    Quach CH; Jung KH; Lee JH; Park JW; Moon SH; Cho YS; Choe YS; Lee KH
    PLoS One; 2016; 11(8):e0159529. PubMed ID: 27479079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic reprogramming results in abnormal glycolysis in gastric cancer: a review.
    Liu Y; Zhang Z; Wang J; Chen C; Tang X; Zhu J; Liu J
    Onco Targets Ther; 2019; 12():1195-1204. PubMed ID: 30863087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer and pH Dynamics: Transcriptional Regulation, Proteostasis, and the Need for New Molecular Tools.
    Czowski BJ; Romero-Moreno R; Trull KJ; White KA
    Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S; Donti TR; Agnihotri N; Mehta K
    Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-H+ exchanger, pH regulation and cancer.
    Reshkin SJ; Cardone RA; Harguindey S
    Recent Pat Anticancer Drug Discov; 2013 Jan; 8(1):85-99. PubMed ID: 22738122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems analysis of intracellular pH vulnerabilities for cancer therapy.
    Persi E; Duran-Frigola M; Damaghi M; Roush WR; Aloy P; Cleveland JL; Gillies RJ; Ruppin E
    Nat Commun; 2018 Jul; 9(1):2997. PubMed ID: 30065243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy.
    Wang G; Wang JJ; Yin PH; Xu K; Wang YZ; Shi F; Gao J; Fu XL
    J Cell Physiol; 2018 Jan; 234(1):348-368. PubMed ID: 30069931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Alterations in Cancer Cells and the Emerging Role of Oncometabolites as Drivers of Neoplastic Change.
    Zhou Z; Ibekwe E; Chornenkyy Y
    Antioxidants (Basel); 2018 Jan; 7(1):. PubMed ID: 29342092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to Stochastic Temporal Variations in Intratumoral Blood Flow: The Warburg Effect as a Bet Hedging Strategy.
    Gravenmier CA; Siddique M; Gatenby RA
    Bull Math Biol; 2018 May; 80(5):954-970. PubMed ID: 28508297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.