These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32272682)

  • 1. Human Adipose-Derived Mesenchymal Stem Cells-Incorporated Silk Fibroin as a Potential Bio-Scaffold in Guiding Bone Regeneration.
    Sartika D; Wang CH; Wang DH; Cherng JH; Chang SJ; Fan GY; Wang YW; Lee CH; Hong PD; Wang CC
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Lentivirus-mediated BMP-2 overexpression plasmid transfection into bone marrow mesenchymal stem cells combined with silk fibroin scaffold for osteoblast transformation].
    Fan SP; Li XH; Shi CX; Fan CX; Ye FG
    Zhongguo Gu Shang; 2019 Sep; 32(9):853-860. PubMed ID: 31615185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects.
    Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B
    Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration.
    Yan S; Feng L; Zhu Q; Yang W; Lan Y; Li D; Liu Y; Xue W; Guo R; Wu G
    ACS Biomater Sci Eng; 2018 Sep; 4(9):3291-3303. PubMed ID: 33435067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioengineered Osteoinductive Broussonetia kazinoki/Silk Fibroin Composite Scaffolds for Bone Tissue Regeneration.
    Kim DK; Kim JI; Hwang TI; Sim BR; Khang G
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1384-1394. PubMed ID: 28001353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Promoted role of bone morphogenetic protein 2/7 heterodimer in the osteogenic differentiation of human adipose-derived stem cells].
    Zhang X; Liu YS; Lv LW; Chen T; Wu G; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2016 Feb; 48(1):37-44. PubMed ID: 26885906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells.
    Li DW; He J; He FL; Liu YL; Liu YY; Ye YJ; Deng X; Yin DC
    J Biomater Appl; 2018 Apr; 32(9):1164-1173. PubMed ID: 29471713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering.
    Wang CY; Hong PD; Wang DH; Cherng JH; Chang SJ; Liu CC; Fang TJ; Wang YW
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold.
    Fani N; Farokhi M; Azami M; Kamali A; Bakhshaiesh NL; Ebrahimi-Barough S; Ai J; Eslaminejad MB
    ACS Biomater Sci Eng; 2019 May; 5(5):2134-2146. PubMed ID: 33405716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes.
    Shalumon KT; Lai GJ; Chen CH; Chen JP
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds.
    Mauney JR; Nguyen T; Gillen K; Kirker-Head C; Gimble JM; Kaplan DL
    Biomaterials; 2007 Dec; 28(35):5280-90. PubMed ID: 17765303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved vascularisation but inefficient in vivo bone regeneration of adipose stem cells and poly-3-hydroxybutyrate-co-3-hydroxyvalerate scaffolds in xeno-free conditions.
    Paula ACC; Carvalho PH; Martins TMM; Boeloni JN; Cunha PS; Novikoff S; Correlo VM; Reis RL; Goes AM
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110301. PubMed ID: 31761156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation.
    Nie L; Zhang H; Ren A; Li Y; Fu G; Cannon RD; Ji P; Wu X; Yang S
    Dent Mater; 2019 Oct; 35(10):1397-1407. PubMed ID: 31395452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells.
    Li DW; Lei X; He FL; He J; Liu YL; Ye YJ; Deng X; Duan E; Yin DC
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):584-597. PubMed ID: 28802849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.