These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32272737)

  • 1. Distinctive Features of Graphene Synthesized in a Plasma Jet Created by a DC Plasma Torch.
    Shavelkina M; Ivanov P; Bocharov A; Amirov R
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32272737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis.
    Antonova IV; Shavelkina MB; Ivanov AI; Soots RA; Ivanov PP; Bocharov AN
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of graphene flakes in the process of synthesis in DC plasma jets.
    Antonova IV; Shavelkina MB; Ivanov AI; Nebogatikova NA; Soots RA; Volodin VA
    Phys Chem Chem Phys; 2022 Nov; 24(46):28232-28241. PubMed ID: 36382495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Buffer Gases on Graphene Flakes Synthesis in Thermal Plasma Process at Atmospheric Pressure.
    Wang C; Song M; Chen X; Li D; Xia W; Xia W
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32054026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of few layer graphene by non-transferred arc plasma system.
    Baek JJ; Kim TH; Park DW
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7418-23. PubMed ID: 24245266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Influence of Plasma-Assisted Production and Milling Processes of DLC Flakes on Their Size, Composition and Chemical Structure.
    Kaźmierczak T; Niedzielski P; Kaczorowski W
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition.
    Malesevic A; Vitchev R; Schouteden K; Volodin A; Zhang L; Tendeloo GV; Vanhulsel A; Haesendonck CV
    Nanotechnology; 2008 Jul; 19(30):305604. PubMed ID: 21828766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions.
    Bundaleska N; Tsyganov D; Dias A; Felizardo E; Henriques J; Dias FM; Abrashev M; Kissovski J; Tatarova E
    Phys Chem Chem Phys; 2018 May; 20(20):13810-13824. PubMed ID: 29745408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave plasma-based high temperature dehydrogenation of hydrocarbons and alcohols as a single route to highly efficient gas phase synthesis of freestanding graphene.
    Jašek O; Toman J; Šnírer M; Jurmanová J; Kudrle V; Michalička J; Všianský D; Pavliňák D
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34496359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new air-cooled argon/helium-compatible inductively coupled plasma torch.
    Miyahara H; Iwai T; Kaburaki Y; Kozuma T; Shigeta K; Okino A
    Anal Sci; 2014; 30(2):231-5. PubMed ID: 24521909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-free gas-phase synthesis of graphene sheets.
    Dato A; Radmilovic V; Lee Z; Phillips J; Frenklach M
    Nano Lett; 2008 Jul; 8(7):2012-6. PubMed ID: 18529034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of graphene using impinging jet exfoliation in a binary system of CO
    Xu QQ; Zhi JT; Zhu HY; Qi JL; Yin JZ; Wang ZG; Wang QB
    Nanotechnology; 2020 Apr; 31(26):265601. PubMed ID: 32163939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Synthesis and Nitrogen Doping of Free-Standing Graphene Applying Microwave Plasma.
    Tsyganov D; Bundaleska N; Henriques J; Felizardo E; Dias A; Abrashev M; Kissovski J; Botelho do Rego AM; Ferraria AM; Tatarova E
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing laser ablated plasmonic nanoparticle aerosols with nonthermal dielectric barrier discharge jets of argon and helium and plasma induced effects.
    Khan TM; Alves GAS; Iqbal A
    Sci Rep; 2023 Jan; 13(1):77. PubMed ID: 36596835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characterization of an atmospheric pressure DC microplasma jet].
    Zheng PC; Wang HM; Li JQ; Han HY; Xu GH; Shen CY; Chu YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):289-92. PubMed ID: 19445187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale synthesis of free-standing N-doped graphene using microwave plasma.
    Bundaleska N; Henriques J; Abrashev M; Botelho do Rego AM; Ferraria AM; Almeida A; Dias FM; Valcheva E; Arnaudov B; Upadhyay KK; Montemor MF; Tatarova E
    Sci Rep; 2018 Aug; 8(1):12595. PubMed ID: 30135558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of high quality syngas from argon/water plasma gasification of biomass and waste.
    Hlina M; Hrabovsky M; Kavka T; Konrad M
    Waste Manag; 2014 Jan; 34(1):63-6. PubMed ID: 24148259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of graphene flakes composed of multi-layer graphene sheets using a thermal plasma jet system.
    Kim J; Heo SB; Gu GH; Suh JS
    Nanotechnology; 2010 Mar; 21(9):095601. PubMed ID: 20110587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pressure hydrogenation of graphene: towards graphane.
    Poh HL; Šaněk F; Sofer Z; Pumera M
    Nanoscale; 2012 Nov; 4(22):7006-11. PubMed ID: 23041800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave plasma-based direct synthesis of free-standing N-graphene.
    Tsyganov D; Bundaleska N; Dias A; Henriques J; Felizardo E; Abrashev M; Kissovski J; do Rego AMB; Ferraria AM; Tatarova E
    Phys Chem Chem Phys; 2020 Feb; 22(8):4772-4787. PubMed ID: 32066999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.