BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32272790)

  • 1. A Non-Invasive Tool for Real-Time Measurement of Sulfate in Living Cells.
    Fatima U; Okla MK; Mohsin M; Naz R; Soufan W; Al-Ghamdi AA; Ahmad A
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32272790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of glutathione in living cells using genetically encoded FRET-based ratiometric nanosensor.
    Ahmad M; Anjum NA; Asif A; Ahmad A
    Sci Rep; 2020 Jan; 10(1):992. PubMed ID: 31969596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET-based nanosensors for monitoring and quantification of alcohols in living cells.
    Soleja N; Manzoor O; Nandal P; Mohsin M
    Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor.
    Okada S; Ota K; Ito T
    Protein Sci; 2009 Dec; 18(12):2518-27. PubMed ID: 19827096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine.
    Mohsin M; Abdin MZ; Nischal L; Kardam H; Ahmad A
    Biosens Bioelectron; 2013 Dec; 50():72-7. PubMed ID: 23835220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent protein-based FRET sensor for intracellular monitoring of redox status in bacteria at single cell level.
    Abraham BG; Santala V; Tkachenko NV; Karp M
    Anal Bioanal Chem; 2014 Nov; 406(28):7195-204. PubMed ID: 25224640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor.
    Zhang C; Wei ZH; Ye BC
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8307-16. PubMed ID: 23893310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genetically encoded Förster resonance energy transfer sensor for monitoring in vivo trehalose-6-phosphate dynamics.
    Peroza EA; Ewald JC; Parakkal G; Skotheim JM; Zamboni N
    Anal Biochem; 2015 Apr; 474():1-7. PubMed ID: 25582303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor.
    Potzkei J; Kunze M; Drepper T; Gensch T; Jaeger KE; Büchs J
    BMC Biol; 2012 Mar; 10():28. PubMed ID: 22439625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Optical Detection of Isoleucine in Living Cells through a Genetically-Encoded Nanosensor.
    Singh S; Sharma MP; Alqarawi AA; Hashem A; Abd Allah EF; Ahmad A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing and construction of genetically encoded FRET-based nanosensor for qualitative analysis of digoxin.
    Ambrin G; Kausar H; Ahmad A
    J Biotechnol; 2020 Nov; 323():322-330. PubMed ID: 32937180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OLIVe: A Genetically Encoded Fluorescent Biosensor for Quantitative Imaging of Branched-Chain Amino Acid Levels inside Single Living Cells.
    Yoshida T; Nakajima H; Takahashi S; Kakizuka A; Imamura H
    ACS Sens; 2019 Dec; 4(12):3333-3342. PubMed ID: 31845569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing and Development of FRET-Based Nanosensor for Real Time Analysis of N-Acetyl-5-Neuraminic Acid in Living Cells.
    Naz R; Okla MK; Fatima U; Mohsin M; Soufan WH; Alaraidh IA; Abdel-Maksoud MA; Ahmad A
    Front Nutr; 2021; 8():621273. PubMed ID: 34136513
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli.
    Wang D; Hurst TK; Thompson RB; Fierke CA
    J Biomed Opt; 2011 Aug; 16(8):087011. PubMed ID: 21895338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and characterization of protein-based cysteine nanosensor for the real time measurement of cysteine level in living cells.
    Singh S; Sharma MP; Ahmad A
    Int J Biol Macromol; 2020 Jan; 143():273-284. PubMed ID: 31830444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor.
    Soleja N; Mohsin M
    Int J Biol Macromol; 2019 Oct; 138():648-657. PubMed ID: 31330208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genetically encoded biosensor for in vitro and in vivo detection of NADP(.).
    Zhao FL; Zhang C; Zhang C; Tang Y; Ye BC
    Biosens Bioelectron; 2016 Mar; 77():901-6. PubMed ID: 26524720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
    Mohsin M; Ahmad A; Iqbal M
    Biotechnol Lett; 2015 Oct; 37(10):1919-28. PubMed ID: 26184603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.