BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32272836)

  • 1. Improvement of Sensing Properties for Copper Phthalocyanine Sensors Based on Polymer Nanofibers Scaffolds.
    Wang L; Wang L; Yang G; Xie Q; Zhong S; Su X; Hou Y; Zhang B
    Langmuir; 2020 Apr; 36(16):4532-4539. PubMed ID: 32272836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of Copper Phthalocyanine with Nitrogen Dioxide and Ammonia Investigation Using X-ray Absorption Spectroscopy and Chemiresistive Gas Measurements.
    Chia LS; Du YH; Palale S; Lee PS
    ACS Omega; 2019 Jun; 4(6):10388-10395. PubMed ID: 31460132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic imaging of the irreversible sensing mechanism of NO2 adsorption on copper phthalocyanine.
    Park JH; Royer JE; Chagarov E; Kaufman-Osborn T; Edmonds M; Kent T; Lee S; Trogler WC; Kummel AC
    J Am Chem Soc; 2013 Oct; 135(39):14600-9. PubMed ID: 23968338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and Gas-Sensing Properties of Two-Dimensional Molybdenum Disulfide/One-Dimensional Copper Phthalocyanine Heterojunction.
    Chen G; Xu X; Wang H; Shaymurat T
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV-Ozone Interfacial Modification in Organic Transistors for High-Sensitivity NO
    Huang W; Zhuang X; Melkonyan FS; Wang B; Zeng L; Wang G; Han S; Bedzyk MJ; Yu J; Marks TJ; Facchetti A
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28614602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Boosting Highly Sensitive and Ultrafast Piezoelectric Sensor Based on Composite Membrane of Copper Phthalocyanine and Graphene Oxide.
    Wang J; Fang Z; Liu W; Zhu L; Pan Q; Gu Z; Wang H; Huang Y; Fang H
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology-Controlled Aluminum-Doped Zinc Oxide Nanofibers for Highly Sensitive NO
    Sanger A; Kang SB; Jeong MH; Im MJ; Choi IY; Kim CU; Lee H; Kwon YM; Baik JM; Jang HW; Choi KJ
    Adv Sci (Weinh); 2018 Sep; 5(9):1800816. PubMed ID: 30250810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of low-dimension carbon-based electrodes on the performance of SnO
    Qi W; Li W; Sun Y; Guo J; Xie D; Cai L; Zhu H; Xiang L; Ren T
    Nanotechnology; 2019 Aug; 30(34):345503. PubMed ID: 31048568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Interaction of Absorbate Copper Phthalocyanine with PVDF Based Ferroelectric Polymer Substrates: A Spectroscopic Study.
    Roy D; Sinha S; Wang CH; Yang YW; Mukherjee M
    Langmuir; 2020 May; 36(17):4607-4618. PubMed ID: 32282215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of interface properties in CuPc based hybrid inorganic-organic solar cells.
    Thalluri GK; Spoltore D; Piersimoni F; Clifford JN; Palomares E; Manca JV
    Dalton Trans; 2012 Oct; 41(37):11419-23. PubMed ID: 22890562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the thermoelectric performance of layer-by-layer structured copper-phthalocyanine (CuPc) thin films doped with hexacyano-trimethylene-cyclopropane (CN6-CP).
    Xing W; Chen J; Liang Y; Zou Y; Sun Y; Xu W; Zhu D
    RSC Adv; 2019 Oct; 9(55):31840-31845. PubMed ID: 35530814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper phthalocyanine quasi-1D nanostructures: growth morphologies and gas sensing properties.
    Strelcov E; Kolmakov A
    J Nanosci Nanotechnol; 2008 Jan; 8(1):212-21. PubMed ID: 18468062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.
    Patois T; Sanchez JB; Berger F; Fievet P; Segut O; Moutarlier V; Bouvet M; Lakard B
    Talanta; 2013 Dec; 117():45-54. PubMed ID: 24209308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets.
    Lee JH; Katoch A; Choi SW; Kim JH; Kim HW; Kim SS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3101-9. PubMed ID: 25602688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.
    Han S; Cheng J; Fan H; Yu J; Li L
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond to nanosecond excited state dynamics of vapor deposited copper phthalocyanine thin films.
    Caplins BW; Mullenbach TK; Holmes RJ; Blank DA
    Phys Chem Chem Phys; 2016 Apr; 18(16):11454-9. PubMed ID: 27058732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P and N type copper phthalocyanines as effective semiconductors in organic thin-film transistor based DNA biosensors at elevated temperatures.
    Boileau NT; Melville OA; Mirka B; Cranston R; Lessard BH
    RSC Adv; 2019 Jan; 9(4):2133-2142. PubMed ID: 35516130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological control of CuPc and its application in organic solar cells.
    Hsiao YS; Whang WT; Suen SC; Shiu JY; Chen CP
    Nanotechnology; 2008 Oct; 19(41):415603. PubMed ID: 21832648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of hole-injection layers on the performance of blue organic light-emitting diodes].
    Gao LY; Zhao SL; Xu Z; Zhang FJ; Sun QJ; Zhang TH; Kong C
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):886-9. PubMed ID: 21714221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position-dependent performance of copper phthalocyanine based field-effect transistors by gold nanoparticles modification.
    Luo X; Li Y; Lv W; Zhao F; Sun L; Peng Y; Wen Z; Zhong J; Zhang J
    Nanotechnology; 2015 Jan; 26(3):035201. PubMed ID: 25548878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.