These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32272874)

  • 1. Toxo: a library for calculating penetrance tables of high-order epistasis models.
    Ponte-Fernández C; González-Domínguez J; Carvajal-Rodríguez A; Martín MJ
    BMC Bioinformatics; 2020 Apr; 21(1):138. PubMed ID: 32272874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PyToxo: a Python tool for calculating penetrance tables of high-order epistasis models.
    González-Seoane B; Ponte-Fernández C; González-Domínguez J; Martín MJ
    BMC Bioinformatics; 2022 Apr; 23(1):117. PubMed ID: 35366804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models.
    Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV
    PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A whole-genome simulator capable of modeling high-order epistasis for complex disease.
    Yang W; Gu CC
    Genet Epidemiol; 2013 Nov; 37(7):686-94. PubMed ID: 24114848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EpiReSIM: A Resampling Method of Epistatic Model without Marginal Effects Using Under-Determined System of Equations.
    Shang J; Cai X; Zhang T; Sun Y; Zhang Y; Liu J; Guan B
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epi2Loc: an R package to investigate two-locus epistatic models.
    Walters RK; Laurin C; Lubke GH
    Twin Res Hum Genet; 2014 Aug; 17(4):272-8. PubMed ID: 24983251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Linkage Analysis to Detect Gene-Gene Interactions. 2. Improved Reliability and Extension to More-Complex Models.
    Hodge SE; Hager VR; Greenberg DA
    PLoS One; 2016; 11(1):e0146240. PubMed ID: 26752287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for modeling epistatic interaction.
    Blumenthal DB; Baumbach J; Hoffmann M; Kacprowski T; List M
    Bioinformatics; 2021 Jul; 37(12):1708-1716. PubMed ID: 33252645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy for linkage analysis under epistasis taking into account genetic heterogeneity.
    Bureau A; Mérette C; Croteau J; Fournier A; Chagnon YC; Roy MA; Maziade M
    Hum Hered; 2009; 68(4):231-42. PubMed ID: 19622890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity.
    Sucheston L; Chanda P; Zhang A; Tritchler D; Ramanathan M
    BMC Genomics; 2010 Sep; 11():487. PubMed ID: 20815886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures.
    Urbanowicz RJ; Kiralis J; Sinnott-Armstrong NA; Heberling T; Fisher JM; Moore JH
    BioData Min; 2012 Oct; 5(1):16. PubMed ID: 23025260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extension of the Walsh-Hadamard transform to calculate and model epistasis in genetic landscapes of arbitrary shape and complexity.
    Faure AJ; Lehner B; Miró Pina V; Serrano Colome C; Weghorn D
    PLoS Comput Biol; 2024 May; 20(5):e1012132. PubMed ID: 38805561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying quantitative trait locus by genetic background interactions in association studies.
    Jannink JL
    Genetics; 2007 May; 176(1):553-61. PubMed ID: 17179077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-stage genome-wide search for epistasis with implementation to Recombinant Inbred Lines (RIL) populations.
    Goldstein P; Korol AB; Reiner-Benaim A
    PLoS One; 2014; 9(12):e115680. PubMed ID: 25536193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comment on two-locus epistatic interaction models for genome-wide association studies.
    Sohn KA; Wee K
    J Bioinform Comput Biol; 2015 Dec; 13(6):1571004. PubMed ID: 26260855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways.
    Kang M; Zhang C; Chun HW; Ding C; Liu C; Gao J
    Bioinformatics; 2015 Mar; 31(5):656-64. PubMed ID: 25359893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data).
    de Los Campos G; Sorensen DA; Toro MA
    G3 (Bethesda); 2019 May; 9(5):1429-1436. PubMed ID: 30877081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing High-Order Epistasis from Genotype-Phenotype Maps Using 'Epistasis' Package.
    Chen J; Wong KC
    Methods Mol Biol; 2021; 2212():265-275. PubMed ID: 33733361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting High-Order Epistasis in Nonlinear Genotype-Phenotype Maps.
    Sailer ZR; Harms MJ
    Genetics; 2017 Mar; 205(3):1079-1088. PubMed ID: 28100592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.