These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32273340)

  • 1. Single-molecule analysis reveals that regulatory light chains fine-tune skeletal myosin II function.
    Nayak A; Wang T; Franz P; Steffen W; Chizhov I; Tsiavaliaris G; Amrute-Nayak M
    J Biol Chem; 2020 May; 295(20):7046-7059. PubMed ID: 32273340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of the Nonprocessive Fast Skeletal Myosin II into a Processive Motor.
    Amrute-Nayak M; Nayak A; Steffen W; Tsiavaliaris G; Scholz T; Brenner B
    Small; 2019 Feb; 15(7):e1804313. PubMed ID: 30657637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac ventricular myosin and slow skeletal myosin exhibit dissimilar chemomechanical properties despite bearing the same myosin heavy chain isoform.
    Wang T; Spahiu E; Osten J; Behrens F; Grünhagen F; Scholz T; Kraft T; Nayak A; Amrute-Nayak M
    J Biol Chem; 2022 Jul; 298(7):102070. PubMed ID: 35623390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.
    Andruchov O; Andruchova O; Wang Y; Galler S
    J Physiol; 2006 Feb; 571(Pt 1):231-42. PubMed ID: 16357018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.
    Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M
    J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity.
    Park I; Han C; Jin S; Lee B; Choi H; Kwon JT; Kim D; Kim J; Lifirsu E; Park WJ; Park ZY; Kim DH; Cho C
    Biochem J; 2011 Feb; 434(1):171-80. PubMed ID: 21126233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing Myosin Ensemble Mechanics in Actin Filament Bundles using Optical Tweezers.
    Al Azzam O; Watts JC; Reynolds JE; Davis JE; Reinemann DN
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Functional Characteristics of Myosin in Fast and Slow Skeletal Muscles.
    Shchepkin DV; Nabiev SR; Koubassova NA; Bershitsky SY; Kopylova GV
    Bull Exp Biol Med; 2020 Jul; 169(3):338-341. PubMed ID: 32743781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoforms Confer Characteristic Force Generation and Mechanosensation by Myosin II Filaments.
    Stam S; Alberts J; Gardel ML; Munro E
    Biophys J; 2015 Apr; 108(8):1997-2006. PubMed ID: 25902439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A point mutation in the regulatory light chain reduces the step size of skeletal muscle myosin.
    Sherwood JJ; Waller GS; Warshaw DM; Lowey S
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10973-8. PubMed ID: 15256600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory light chain phosphorylation augments length-dependent contraction in PTU-treated rats.
    Breithaupt JJ; Pulcastro HC; Awinda PO; DeWitt DC; Tanner BCW
    J Gen Physiol; 2019 Jan; 151(1):66-76. PubMed ID: 30523115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation and activity of smooth muscle myosin probed by various essential light chains.
    Katoh T; Morita F
    J Biochem; 1997 Jan; 121(1):56-62. PubMed ID: 9058192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle myosin performance measured with a synthetic nanomachine reveals a class-specific Ca
    Pertici I; Bianchi G; Bongini L; Cojoc D; Taft MH; Manstein DJ; Lombardi V; Bianco P
    J Physiol; 2021 Mar; 599(6):1815-1831. PubMed ID: 33507554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory and essential light chains of myosin rotate equally during contraction of skeletal muscle.
    Borejdo J; Ushakov DS; Akopova I
    Biophys J; 2002 Jun; 82(6):3150-9. PubMed ID: 12023239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin II isoforms in smooth muscle: heterogeneity and function.
    Eddinger TJ; Meer DP
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C493-508. PubMed ID: 17475667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acto-Myosin Cross-Bridge Stiffness Depends on the Nucleotide State of Myosin II.
    Wang T; Brenner B; Nayak A; Amrute-Nayak M
    Nano Lett; 2020 Oct; 20(10):7506-7512. PubMed ID: 32897722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The essential light chain is required for full force production by skeletal muscle myosin.
    VanBuren P; Waller GS; Harris DE; Trybus KM; Warshaw DM; Lowey S
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12403-7. PubMed ID: 7809049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of the cardiac myosin regulatory light chain increases isometric force production.
    Pant K; Watt J; Greenberg M; Jones M; Szczesna-Cordary D; Moore JR
    FASEB J; 2009 Oct; 23(10):3571-80. PubMed ID: 19470801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of the interaction of myosin essential light chain isoforms with actin in skeletal muscles.
    Nieznańska H; Nieznański K; Stepkowski D
    Acta Biochim Pol; 2002; 49(3):709-19. PubMed ID: 12422241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic effects of myosin regulatory light chain phosphorylation on skeletal muscle contraction.
    Davis JS; Satorius CL; Epstein ND
    Biophys J; 2002 Jul; 83(1):359-70. PubMed ID: 12080126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.