These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32273838)

  • 1. Mechanotactile Sensory Feedback Improves Embodiment of a Prosthetic Hand During Active Use.
    Shehata AW; Rehani M; Jassat ZE; Hebert JS
    Front Neurosci; 2020; 14():263. PubMed ID: 32273838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor Control and Sensory Feedback Enhance Prosthesis Embodiment and Reduce Phantom Pain After Long-Term Hand Amputation.
    Page DM; George JA; Kluger DT; Duncan C; Wendelken S; Davis T; Hutchinson DT; Clark GA
    Front Hum Neurosci; 2018; 12():352. PubMed ID: 30319374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasping Embodiment: Haptic Feedback for Artificial Limbs.
    Moore CH; Corbin SF; Mayr R; Shockley K; Silva PL; Lorenz T
    Front Neurorobot; 2021; 15():662397. PubMed ID: 34122033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Haptic Sleeve as a Method of Mechanotactile Feedback Restoration for Myoelectric Hand Prosthesis Users.
    Borkowska VR; McConnell A; Vijayakumar S; Stokes A; Roche AD
    Front Rehabil Sci; 2022; 3():806479. PubMed ID: 36188923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-Limb Transfer of Grasp Force Perception With Closed-Loop Hand Prosthesis.
    Fu Q; Shao F; Santello M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):927-936. PubMed ID: 31021799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of invasive and non-invasive sensory feedback in upper limb prostheses.
    Svensson P; Wijk U; Björkman A; Antfolk C
    Expert Rev Med Devices; 2017 Jun; 14(6):439-447. PubMed ID: 28532184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand.
    Chai G; Wang H; Li G; Sheng X; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary Evaluation of the Effect of Mechanotactile Feedback Location on Myoelectric Prosthesis Performance Using a Sensorized Prosthetic Hand.
    Wells ED; Shehata AW; Dawson MR; Carey JP; Hebert JS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evaluation of the impact of sEMG interfaces in enhancing embodiment of virtual myoelectric prostheses.
    Castañeda TS; Connan M; Capsi-Morales P; Beckerle P; Castellini C; Piazza C
    J Neuroeng Rehabil; 2024 Apr; 21(1):57. PubMed ID: 38627772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The rubber hand illusion evaluated using different stimulation modalities.
    Svensson P; Malešević N; Wijk U; Björkman A; Antfolk C
    Front Neurosci; 2023; 17():1237053. PubMed ID: 37781250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.
    Hellman RB; Chang E; Tanner J; Helms Tillery SI; Santos VJ
    Front Hum Neurosci; 2015; 9():26. PubMed ID: 25745391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis.
    Schiefer M; Tan D; Sidek SM; Tyler DJ
    J Neural Eng; 2016 Feb; 13(1):016001. PubMed ID: 26643802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Integration of an Inexpensive Wearable Mechanotactile Feedback System for Myoelectric Prostheses.
    Schoepp KR; Dawson MR; Schofield JS; Carey JP; Hebert JS
    IEEE J Transl Eng Health Med; 2018; 6():2100711. PubMed ID: 30197843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research.
    Zbinden J; Lendaro E; Ortiz-Catalan M
    J Neuroeng Rehabil; 2022 Nov; 19(1):122. PubMed ID: 36369004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object stiffness recognition and vibratory feedback without
    Bruni G; Marinelli A; Bucchieri A; Boccardo N; Caserta G; Di Domenico D; Barresi G; Florio A; Canepa M; Tessari F; Laffranchi M; De Michieli L
    Front Neurosci; 2023; 17():1078846. PubMed ID: 36875662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous motor imagery and visual feedback of finger movement elicit the moving rubber hand illusion, at least in illusion-susceptible individuals.
    Berger CC; Coppi S; Ehrsson HH
    Exp Brain Res; 2023 Apr; 241(4):1021-1039. PubMed ID: 36928694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees.
    Marasco PD; Kim K; Colgate JE; Peshkin MA; Kuiken TA
    Brain; 2011 Mar; 134(Pt 3):747-58. PubMed ID: 21252109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential experiences of embodiment between body-powered and myoelectric prosthesis users.
    Engdahl SM; Meehan SK; Gates DH
    Sci Rep; 2020 Sep; 10(1):15471. PubMed ID: 32963290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.