These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 32274317)

  • 1. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials.
    Ma Q; Song Y; Sun W; Cao J; Yuan H; Wang X; Sun Y; Shum HC
    Adv Sci (Weinh); 2020 Apr; 7(7):1903359. PubMed ID: 32274317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-liquid phase separation-inspired design of biomaterials.
    Song Y
    Biomater Sci; 2024 Apr; 12(8):1943-1949. PubMed ID: 38465963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring New Horizons in Liquid Compartmentalization via Microfluidics.
    Keller S; Teora SP; Boujemaa M; Wilson DA
    Biomacromolecules; 2021 May; 22(5):1759-1769. PubMed ID: 33835788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Liquid phase separation in bacteria.
    Guo D; Xiong Y; Fu B; Sha Z; Li B; Wu H
    Microbiol Res; 2024 Apr; 281():127627. PubMed ID: 38262205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications.
    Liu Z; Zhou W; Qi C; Kong T
    Adv Mater; 2020 Oct; 32(43):e2002932. PubMed ID: 32954548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases].
    Chen Y; Ling X; Yu H; Ding J
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Sep; 54(5):857-862. PubMed ID: 37866939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Dynamics of Viral-Factories-Inspired Compartments Formed by Peptide-RNA Liquid-Liquid Phase Separation.
    Katzir I; Haimov E; Lampel A
    Adv Mater; 2022 Nov; 34(47):e2206371. PubMed ID: 36134527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses.
    Nesterov SV; Ilyinsky NS; Uversky VN
    Biochim Biophys Acta Mol Cell Res; 2021 Oct; 1868(11):119102. PubMed ID: 34293345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid-Liquid Phase Separation.
    Badaczewska-Dawid AE; Uversky VN; Potoyan DA
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-liquid phase separation of polymeric microdomains with tunable inner morphology: Mechanistic insights and applications.
    Bartolini A; Tempesti P; Ghobadi AF; Berti D; Smets J; Aouad YG; Baglioni P
    J Colloid Interface Sci; 2019 Nov; 556():74-82. PubMed ID: 31430708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid-Liquid Phase Separation.
    Sakuta H; Fujita F; Hamada T; Hayashi M; Takiguchi K; Tsumoto K; Yoshikawa K
    Chembiochem; 2020 Dec; 21(23):3323-3328. PubMed ID: 32667694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 14-3-3 Proteins are Potential Regulators of Liquid-Liquid Phase Separation.
    Huang X; Zheng Z; Wu Y; Gao M; Su Z; Huang Y
    Cell Biochem Biophys; 2022 Jun; 80(2):277-293. PubMed ID: 35142991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells.
    Zhao H; Ibrahimova V; Garanger E; Lecommandoux S
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11028-11036. PubMed ID: 32207864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Membraneless organelles and liquid-liquid phase separation – methods for their characterisation].
    Tarczewska A; Wycisk K; Sozańska N; Ożyhar A
    Postepy Biochem; 2020 Jun; 66(2):111-124. PubMed ID: 32700504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.