These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32274829)

  • 1. Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models.
    Kobayashi Y; Uchida T; Yoshida K
    Environ Toxicol Chem; 2020 Jul; 39(7):1451-1459. PubMed ID: 32274829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-property relationships for the calculation of the soil adsorption coefficient using machine learning algorithms with calculated chemical properties from open-source software.
    Kobayashi Y; Yoshida K
    Environ Res; 2021 May; 196():110363. PubMed ID: 33148423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates.
    Islam MN; Huang L; Siciliano SD
    Chemosphere; 2020 Jun; 248():126031. PubMed ID: 32032877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the koc concept?
    Jarvis N
    Sci Total Environ; 2016 Jan; 539():294-303. PubMed ID: 26363724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis of pesticide sorption in subsoil.
    Jarvis N
    Environ Toxicol Chem; 2018 Mar; 37(3):755-761. PubMed ID: 29057488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation-Independent QSPR Approach for the Soil Sorption Coefficient of Heterogeneous Compounds.
    Aranda JF; Garro Martinez JC; Castro EA; Duchowicz PR
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27527144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSPR modelling of the soil sorption coefficient from training sets of different sizes.
    Olguin CJM; Sampaio SC; Dos Reis RR; Remor MB; Olguin CFA
    SAR QSAR Environ Res; 2019 May; 30(5):299-311. PubMed ID: 30982322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical equivalence of prediction models of the soil sorption coefficient obtained using different log P algorithms.
    Olguin CJM; Sampaio SC; Dos Reis RR
    Chemosphere; 2017 Oct; 184():498-504. PubMed ID: 28622645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular properties affecting the adsorption coefficient of pesticides from various chemical families.
    Langeron J; Blondel A; Sayen S; Hénon E; Couderchet M; Guillon E
    Environ Sci Pollut Res Int; 2014; 21(16):9727-41. PubMed ID: 24801285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple approach to the prediction of soil sorption of organophosphorus pesticides.
    Muhire J; Li SS; Yin B; Mi JY; Zhai HL
    J Environ Sci Health B; 2021; 56(6):606-612. PubMed ID: 34162318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of different log P algorithms on the modeling of the soil sorption coefficient of nonionic pesticides.
    dos Reis RR; Sampaio SC; de Melo EB
    Water Res; 2013 Oct; 47(15):5751-9. PubMed ID: 23886539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR models for prediction of the soil sorption coefficient (log KOC) values of 209 polychlorinated trans-azobenzenes (PCt-ABs).
    Wilczyńska-Piliszek AJ; Piliszek S; Falandysz J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(3):441-9. PubMed ID: 22320697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on adsorption behavior of volatile and semivolatile organic vapors to air-dry soils based on QSPR methods.
    Liu H; Yao X; Liu M; Hu Z; Fan B
    Environ Pollut; 2007 May; 147(1):41-9. PubMed ID: 17240022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan.
    Alfonso LF; Germán GV; María Del Carmen PC; Hossein G
    Chemosphere; 2017 Jan; 166():292-299. PubMed ID: 27700995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A topological substructural molecular design to predict soil sorption coefficients for pesticides.
    González MP; Helguera AM; Collado IG
    Mol Divers; 2006 May; 10(2):109-18. PubMed ID: 16710808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-sorption relationships of pesticides used in the sugarcane industry in the northern coastal area of Paraíba State, Brazil.
    da S Soares GC; de M e Silva L; de A Farias CH; Scotti L; Scotti MT
    Altern Lab Anim; 2014 Mar; 42(1):81-90. PubMed ID: 24773491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular properties affecting the adsorption coefficient of phenylurea herbicides.
    Blondel A; Langeron J; Sayen S; Hénon E; Couderchet M; Guillon E
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6266-81. PubMed ID: 23589246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing chemophoric sites in organophosphorus insecticides through the MIA-QSPR modeling of soil sorption data.
    Daré JK; Silva CF; Freitas MP
    Ecotoxicol Environ Saf; 2017 Oct; 144():560-563. PubMed ID: 28688357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.