These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32275131)

  • 1. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material.
    Chen C; Li Z; Mi R; Dai J; Xie H; Pei Y; Li J; Qiao H; Tang H; Yang B; Hu L
    ACS Nano; 2020 May; 14(5):5194-5202. PubMed ID: 32275131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo.
    Li Z; Chen C; Mi R; Gan W; Dai J; Jiao M; Xie H; Yao Y; Xiao S; Hu L
    Adv Mater; 2020 Mar; 32(10):e1906308. PubMed ID: 31999009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superstrong, Lightweight, and Exceptional Environmentally Stable SiO
    Wang YY; Li YQ; Xue SS; Zhu WB; Wang XQ; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7311-7320. PubMed ID: 35078316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Bamboo Steel Derived from Natural Bamboo.
    Wang YY; Wang XQ; Li YQ; Huang P; Yang B; Hu N; Fu SY
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1431-1440. PubMed ID: 33356105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable high-strength and dimensionally stable composites through in situ regulation and reconstitution of bamboo-derived lignin and hemicellulose contents.
    Han S; Chen X; Chen F; Lou Z; Ren X; Ye H; Wang G
    Int J Biol Macromol; 2024 May; 267(Pt 2):131595. PubMed ID: 38621564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing bulk natural wood into a high-performance structural material.
    Song J; Chen C; Zhu S; Zhu M; Dai J; Ray U; Li Y; Kuang Y; Li Y; Quispe N; Yao Y; Gong A; Leiste UH; Bruck HA; Zhu JY; Vellore A; Li H; Minus ML; Jia Z; Martini A; Li T; Hu L
    Nature; 2018 Feb; 554(7691):224-228. PubMed ID: 29420466
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Meng T; Ding Y; Liu Y; Xu L; Mao Y; Gelfond J; Li S; Li Z; Salipante PF; Kim H; Zhu JY; Pan X; Hu L
    Nano Lett; 2023 Sep; 23(18):8411-8418. PubMed ID: 37677149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing An All-Natural Bulk Structural Material from Surface-Charged Bamboo Cellulose Fibers with Enhanced Mechanical and Thermal Properties.
    Qin S; Liu K; Wang Y; Ren D; Zhang S; Zhai Y; Ma H; Zhou X; Huang F
    ChemSusChem; 2023 May; 16(10):e202202185. PubMed ID: 36807548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green, Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings.
    Wang J; Wu X; Wang Y; Zhao W; Zhao Y; Zhou M; Wu Y; Ji G
    Nanomicro Lett; 2022 Dec; 15(1):11. PubMed ID: 36495422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures.
    Frey M; Schneider L; Masania K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35305-35311. PubMed ID: 31454224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Study on the Fracture Toughness of Bamboo Scrimber.
    Zhang K; Hou Y; Lu Y; Wang M
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material.
    Han X; Wu W; Wang J; Tian Z; Jiang S
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient fabrication of anisotropic regenerated cellulose films from bamboo via a facile wet extrusion strategy.
    Lin X; Huang C; Wu P; Chai H; Cai C; Peng Y; Wang J; Li Y; Xu D; Li X
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130966. PubMed ID: 38508546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.
    Habibi MK; Samaei AT; Gheshlaghi B; Lu J; Lu Y
    Acta Biomater; 2015 Apr; 16():178-86. PubMed ID: 25662164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering.
    Frey M; Widner D; Segmehl JS; Casdorff K; Keplinger T; Burgert I
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5030-5037. PubMed ID: 29373784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Densification of Bamboo: State of the Art.
    Kadivar M; Gauss C; Ghavami K; Savastano H
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33003633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bamboo-Inspired Renewable, Lightweight, and Vibration-Damping Laminated Structural Materials for the Floor of a Railroad Car.
    Han S; Chen F; Yu Y; Zheng Z; Chen L; Wang G
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42645-42655. PubMed ID: 36095298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust flexural performance and fracture behavior of TiO
    Ba Z; Luo H; Guan J; Luo J; Gao J; Wu S; Ritchie RO
    Nat Commun; 2023 Mar; 14(1):1234. PubMed ID: 36871036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material.
    Chen Y; Dang B; Jin C; Sun Q
    ACS Nano; 2019 Jan; 13(1):371-376. PubMed ID: 30418747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification.
    Chen F; Ritter M; Xu Y; Tu K; Koch SM; Yan W; Bian H; Ding Y; Sun J; Burgert I
    Small; 2024 Sep; 20(38):e2311966. PubMed ID: 38770995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.