These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32275133)

  • 1. Hot Carriers and Photothermal Effects of Monolayer MoO
    Chen Y; Wu X; Chen T; Yang G
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19357-19368. PubMed ID: 32275133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen Vacancy-Engineered PEGylated MoO
    Chen Y; Chen T; Wu X; Yang G
    Small; 2019 Nov; 15(46):e1903153. PubMed ID: 31583830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocarbon Framework-Supported Ultrafine Mo
    Wang L; Zhuang L; He S; Tian F; Yang X; Guan S; Waterhouse GIN; Zhou S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59649-59661. PubMed ID: 34894645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfite-oxidizing enzymes.
    Kappler U; Enemark JH
    J Biol Inorg Chem; 2015 Mar; 20(2):253-64. PubMed ID: 25261289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity.
    Ragg R; Natalio F; Tahir MN; Janssen H; Kashyap A; Strand D; Strand S; Tremel W
    ACS Nano; 2014 May; 8(5):5182-9. PubMed ID: 24702461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired mitochondrial maturation of sulfite oxidase in a patient with severe sulfite oxidase deficiency.
    Bender D; Kaczmarek AT; Santamaria-Araujo JA; Stueve B; Waltz S; Bartsch D; Kurian L; Cirak S; Schwarz G
    Hum Mol Genet; 2019 Sep; 28(17):2885-2899. PubMed ID: 31127934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The History of Animal and Plant Sulfite Oxidase-A Personal View.
    Mendel RR; Schwarz G
    Molecules; 2023 Oct; 28(19):. PubMed ID: 37836841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells.
    Song G; Shen J; Jiang F; Hu R; Li W; An L; Zou R; Chen Z; Qin Z; Hu J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3915-22. PubMed ID: 24564332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based alteration of substrate specificity and catalytic activity of sulfite oxidase from sulfite oxidation to nitrate reduction.
    Qiu JA; Wilson HL; Rajagopalan KV
    Biochemistry; 2012 Feb; 51(6):1134-47. PubMed ID: 22263579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis.
    Ge H; Kuwahara Y; Yamashita H
    Chem Commun (Camb); 2022 Jul; 58(61):8466-8479. PubMed ID: 35861347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials.
    Xu G; Du X; Wang W; Qu Y; Liu X; Zhao M; Li W; Li YQ
    Small; 2022 Dec; 18(49):e2204131. PubMed ID: 36161698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-induced synthesis of molybdenum oxide quantum dots for surface-enhanced Raman scattering and photothermal therapy.
    Yu H; Zhuang Z; Li D; Guo Y; Li Y; Zhong H; Xiong H; Liu Z; Guo Z
    J Mater Chem B; 2020 Feb; 8(5):1040-1048. PubMed ID: 31939980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical porous MoS
    Cai Y; Niu L; Liu X; Zhang Y; Zheng Z; Zeng L; Liu A
    J Hazard Mater; 2022 Mar; 425():128053. PubMed ID: 34915296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy.
    Zhan Y; Liu Y; Zu H; Guo Y; Wu S; Yang H; Liu Z; Lei B; Zhuang J; Zhang X; Huang D; Hu C
    Nanoscale; 2018 Mar; 10(13):5997-6004. PubMed ID: 29542776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QM/MM study of the reaction mechanism of sulfite oxidase.
    Caldararu O; Feldt M; Cioloboc D; van Severen MC; Starke K; Mata RA; Nordlander E; Ryde U
    Sci Rep; 2018 Mar; 8(1):4684. PubMed ID: 29549261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step.
    Hänsch R; Lang C; Riebeseel E; Lindigkeit R; Gessler A; Rennenberg H; Mendel RR
    J Biol Chem; 2006 Mar; 281(10):6884-8. PubMed ID: 16407262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Peroxidase-like Activity of CuS Hollow Nanocages by Plasmon-Induced Hot Carriers and Photothermal Effect for the Dual-Mode Detection of Tannic Acid.
    Wu S; Zhang P; Jiang Z; Zhang W; Gong X; Wang Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40191-40199. PubMed ID: 36004449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-activated nanozymes with enhanced catalytic activity by near-infrared light irradiation.
    Liu X; Wan Y; Jiang T; Zhang Y; Huang P; Tang L
    Chem Commun (Camb); 2020 Feb; 56(12):1784-1787. PubMed ID: 31950129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Molecular Catalysis Identifying Activation Energy of the Intermediate Product and Rate-Limiting Step in Plasmonic Photocatalysis.
    Li W; Miao J; Peng T; Lv H; Wang JG; Li K; Zhu Y; Li D
    Nano Lett; 2020 Apr; 20(4):2507-2513. PubMed ID: 32182075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.