These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32275348)

  • 1. Three-dimensional finite element analysis of the dural folds and the human skull under head acceleration.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2021 Feb; 304(2):384-392. PubMed ID: 32275348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (
    Sellés de Lucas V; Dutel H; Evans SE; Gröning F; Sharp AC; Watson PJ; Fagan MJ
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30355804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenestrated Falx Cerebri and Additional Sinuses in the Tentorium Cerebelli.
    Nayak SB; Vasudeva SK
    J Craniofac Surg; 2020 Sep; 31(6):e585-e586. PubMed ID: 32502106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Stress Trajectories in Human Adult Cleft Skull.
    Harikrishnan P; Balakumaran V
    J Craniofac Surg; 2017 Sep; 28(6):1552-1553. PubMed ID: 28708650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of wave propagation through head layers with focus on understanding blast wave transmission.
    Sutar S; Ganpule S
    Biomech Model Mechanobiol; 2020 Jun; 19(3):875-892. PubMed ID: 31745681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus.
    Witzel U; Preuschoft H
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):391-401. PubMed ID: 15747343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface reconstruction from routine CT-scan shows large anatomical variations of falx cerebri and tentorium cerebelli.
    Staquet H; Francois PM; Sandoz B; Laporte S; Decq P; Goutagny S
    Acta Neurochir (Wien); 2021 Mar; 163(3):607-613. PubMed ID: 32034496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular mechanisms of calvarial bone induction: immature versus mature dura mater.
    Greenwald JA; Mehrara BJ; Spector JA; Chin GS; Steinbrech DS; Saadeh PB; Luchs JS; Paccione MF; Gittes GK; Longaker MT
    Plast Reconstr Surg; 2000 Apr; 105(4):1382-92. PubMed ID: 10744229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting skull loading: applying multibody dynamics analysis to a macaque skull.
    Curtis N; Kupczik K; O'higgins P; Moazen M; Fagan M
    Anat Rec (Hoboken); 2008 May; 291(5):491-501. PubMed ID: 18384061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Establishment of a 3D finite element model of human skull using MSCT images and mimics software].
    Huang P; Li ZD; Shao Y; Zou DH; Liu NG; Li L; Chen YY; Wan L; Chen YJ
    Fa Yi Xue Za Zhi; 2011 Feb; 27(1):1-4, 8. PubMed ID: 21542216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the primate skull base.
    Demes B
    Adv Anat Embryol Cell Biol; 1985; 94():1-59. PubMed ID: 4036695
    [No Abstract]   [Full Text] [Related]  

  • 13. [Mechanical tolerance of tentorium cerebelli (author's transl)].
    Dirnhofer R; Walz F; Sigrist T
    Z Rechtsmed; 1979 Mar; 82(4):305-11. PubMed ID: 433464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immature versus mature dura mater: II. Differential expression of genes important to calvarial reossification.
    Greenwald JA; Mehrara BJ; Spector JA; Fagenholz PJ; Saadeh PB; Steinbrech DS; Gittes GK; Longaker MT
    Plast Reconstr Surg; 2000 Sep; 106(3):630-8; discussion 639. PubMed ID: 10987470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads.
    Jaisson M; Lestriez P; Taiar R; Debray K
    Acta Bioeng Biomech; 2011; 13(4):85-91. PubMed ID: 22339069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical strain affects dura mater biological processes: implications for immature calvarial healing.
    Fong KD; Warren SM; Loboa EG; Henderson JH; Fang TD; Cowan CM; Carter DR; Longaker MT
    Plast Reconstr Surg; 2003 Oct; 112(5):1312-27. PubMed ID: 14504515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human head dynamic response to side impact by finite element modeling.
    Ruan JS; Khalil T; King AI
    J Biomech Eng; 1991 Aug; 113(3):276-83. PubMed ID: 1921354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Study of the Development of Long Bones: Finite Element Structure Synthesis of the Human Second Proximal Phalanx Under Growth Conditions.
    Lipphaus A; Witzel U
    Anat Rec (Hoboken); 2019 Aug; 302(8):1389-1398. PubMed ID: 30369073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in elongation of falx cerebri during craniosacral therapy techniques applied on the skull of an embalmed cadaver.
    Kostopoulos DC; Keramidas G
    Cranio; 1992 Jan; 10(1):9-12. PubMed ID: 1302656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.