These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32275397)

  • 21. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms.
    Stegemeier JP; Avellan A; Lowry GV
    Environ Sci Technol; 2017 Nov; 51(21):12114-12122. PubMed ID: 29017014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.
    Hofacker AF; Voegelin A; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2013 Jul; 47(14):7739-46. PubMed ID: 23819689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transformations of Ag
    Khan AU; Xu Z; Qian X; Hong A; Tang Q; Zeng T; Kah M; Li L
    J Hazard Mater; 2021 Jan; 401():123406. PubMed ID: 32653797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles.
    Freitas DN; Martinolich AJ; Amaris ZN; Wheeler KE
    J Nanobiotechnology; 2016 Jan; 14():7. PubMed ID: 26801765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomineralization of Cu
    Kimber RL; Bagshaw H; Smith K; Buchanan DM; Coker VS; Cavet JS; Lloyd JR
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of extracellular polymeric substances on silver nanoparticle bioaccumulation and toxicity to Triticum aestivum L.
    Fu QL; Zhong CJ; Qing T; Du ZY; Li CC; Fei JJ; Peijnenburg WJGM
    Chemosphere; 2021 Oct; 280():130863. PubMed ID: 34162100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Synthesis of Ag2S nanoparticles at room temperature and their characterization with XPS].
    Ye Y; Shao MW; Wu ZC; Ni YB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):553-5. PubMed ID: 16097683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Ag and Ag
    Liu S; Wang C; Hou J; Wang P; Miao L; Fan X; You G; Xu Y
    Water Res; 2018 Jun; 137():28-36. PubMed ID: 29525425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers.
    Pang M; Hu J; Zeng HC
    J Am Chem Soc; 2010 Aug; 132(31):10771-85. PubMed ID: 20681710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III).
    Li L; Wang Y; Liu Q; Jiang G
    Environ Sci Technol; 2016 Jan; 50(1):188-96. PubMed ID: 26606372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contrasting effects of iron plaque on the bioavailability of metallic and sulfidized silver nanoparticles to rice.
    Wu Y; Yang L; Gong H; Dang F; Zhou DM
    Environ Pollut; 2020 May; 260():113969. PubMed ID: 31991350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique.
    Dang F; Chen YZ; Huang YN; Hintelmann H; Si YB; Zhou DM
    Environ Sci Technol; 2019 Apr; 53(7):3802-3810. PubMed ID: 30861341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of a Model Soil Microorganism and of Its Secretome on the Fate of Silver Nanoparticles.
    Eymard-Vernain E; Lelong C; Pradas Del Real AE; Soulas R; Bureau S; Tardillo Suarez V; Gallet B; Proux O; Castillo-Michel H; Sarret G
    Environ Sci Technol; 2018 Jan; 52(1):71-78. PubMed ID: 29211460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles.
    Ayodhya D; Veerabhadram G
    J Photochem Photobiol B; 2016 Apr; 157():57-69. PubMed ID: 26894846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity.
    Shi J; Sun X; Zou X; Zhang H
    Toxicol Lett; 2014 Aug; 229(1):17-24. PubMed ID: 24910988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and functional effects of Cu metalloprotein-driven silver nanoparticle dissolution.
    Martinolich AJ; Park G; Nakamoto MY; Gate RE; Wheeler KE
    Environ Sci Technol; 2012 Jun; 46(11):6355-62. PubMed ID: 22563882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioturbation of Ag
    Baccaro M; Harrison S; van den Berg H; Sloot L; Hermans D; Cornelis G; van Gestel CAM; van den Brink NW
    Environ Pollut; 2019 Sep; 252(Pt A):155-162. PubMed ID: 31146230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.