These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 32275440)

  • 1. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles.
    Conteduca D; Khan SN; Martínez Ruiz MA; Bruce GD; Krauss TF; Dholakia K
    ACS Photonics; 2023 Dec; 10(12):4322-4328. PubMed ID: 38145167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical trapping of single nano-size particles using a plasmonic nanocavity.
    Zhang J; Lu F; Zhang W; Yu W; Zhu W; Premaratne M; Mei T; Xiao F; Zhao J
    J Phys Condens Matter; 2020 Aug; 32(47):. PubMed ID: 32870814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Trapping and Manipulation of Self-Assembled Ag Nanoplates as Efficient Plasmonic Tweezers.
    Jia P; Shi H; Yan X; Pei Y; Sun X
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28731-28738. PubMed ID: 37272915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced trapping properties induced by strong LSPR-exciton coupling in plasmonic tweezers.
    Jia P; Shi H; Liu R; Yan X; Sun X
    Opt Express; 2023 Dec; 31(26):44177-44189. PubMed ID: 38178495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic optical trapping of nanoparticles with precise angular selectivity.
    Chai RH; Zou WJ; Qian J; Chen J; Sun Q; Xu JJ
    Opt Express; 2019 Oct; 27(22):32556-32566. PubMed ID: 31684465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance.
    Song M; Wang C; Zhao Z; Pu M; Liu L; Zhang W; Yu H; Luo X
    Nanoscale; 2016 Jan; 8(3):1635-41. PubMed ID: 26691553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping particles using waveguide-coupled gold bowtie plasmonic tweezers.
    Lin PT; Chu HY; Lu TW; Lee PT
    Lab Chip; 2014 Dec; 14(24):4647-52. PubMed ID: 25288366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.