These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 32275623)

  • 1. DMGAN: Adversarial Learning-Based Decision Making for Human-Level Plant-Wide Operation of Process Industries Under Uncertainties.
    Zheng N; Ding J; Chai T
    IEEE Trans Neural Netw Learn Syst; 2021 Mar; 32(3):985-998. PubMed ID: 32275623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative Adversarial Networks in Medical Image Processing.
    Gong M; Chen S; Chen Q; Zeng Y; Zhang Y
    Curr Pharm Des; 2021; 27(15):1856-1868. PubMed ID: 33238866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs).
    He C; Huang S; Cheng R; Tan KC; Jin Y
    IEEE Trans Cybern; 2021 Jun; 51(6):3129-3142. PubMed ID: 32365041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Power Spectrum Maps Estimation Algorithm Based on Generative Adversarial Networks for Underlay Cognitive Radio Networks.
    Han X; Xue L; Shao F; Xu Y
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adversarial symmetric GANs: Bridging adversarial samples and adversarial networks.
    Liu F; Xu M; Li G; Pei J; Shi L; Zhao R
    Neural Netw; 2021 Jan; 133():148-156. PubMed ID: 33217683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ea-GANs: Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis.
    Yu B; Zhou L; Wang L; Shi Y; Fripp J; Bourgeat P
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1750-1762. PubMed ID: 30714911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent.
    Wang D; Qin X; Song F; Cheng L
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2768-2780. PubMed ID: 33378267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization.
    Siddiquee MMR; Zhou Z; Tajbakhsh N; Feng R; Gotway MB; Bengio Y; Liang J
    Proc IEEE Int Conf Comput Vis; 2019 Nov; 2019():191-200. PubMed ID: 32612486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GANViz: A Visual Analytics Approach to Understand the Adversarial Game.
    Wang J; Gou L; Yang H; Shen HW
    IEEE Trans Vis Comput Graph; 2018 Jun; 24(6):1905-1917. PubMed ID: 29723140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing Amari-Alpha Divergence to Stabilize the Training of Generative Adversarial Networks.
    Cai L; Chen Y; Cai N; Cheng W; Wang H
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulation of Cosmological Mass Maps with Conditional Generative Adversarial Networks.
    Perraudin N; Marcon S; Lucchi A; Kacprzak T
    Front Artif Intell; 2021; 4():673062. PubMed ID: 34151255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Effectiveness of Least Squares Generative Adversarial Networks.
    Mao X; Li Q; Xie H; Lau RYK; Wang Z; Smolley SP
    IEEE Trans Pattern Anal Mach Intell; 2019 Dec; 41(12):2947-2960. PubMed ID: 30273144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating object compositionality in Generative Adversarial Networks.
    van Steenkiste S; Kurach K; Schmidhuber J; Gelly S
    Neural Netw; 2020 Oct; 130():309-325. PubMed ID: 32736226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SiGAN: Siamese Generative Adversarial Network for Identity-Preserving Face Hallucination.
    Hsu CC; Lin CW; Su WT; Cheung G
    IEEE Trans Image Process; 2019 Dec; 28(12):6225-6236. PubMed ID: 31265397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved Approach towards Multi-Agent Pursuit-Evasion Game Decision-Making Using Deep Reinforcement Learning.
    Wan K; Wu D; Zhai Y; Li B; Gao X; Hu Z
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transfer learning model with multi-source domains for biomedical event trigger extraction.
    Chen Y
    BMC Genomics; 2021 Jan; 22(1):31. PubMed ID: 33413073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI.
    Decourt C; Duong L
    Comput Biol Med; 2020 Aug; 123():103884. PubMed ID: 32658792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A GAN-based image synthesis method for skin lesion classification.
    Qin Z; Liu Z; Zhu P; Xue Y
    Comput Methods Programs Biomed; 2020 Oct; 195():105568. PubMed ID: 32526536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.