BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32275664)

  • 1. Identification of genomic insertion and flanking sequences of the transgenic drought-tolerant maize line "SbSNAC1-382" using the single-molecule real-time (SMRT) sequencing method.
    Zeng T; Zhang D; Li Y; Li C; Liu X; Shi Y; Song Y; Li Y; Wang T
    PLoS One; 2020; 15(4):e0226455. PubMed ID: 32275664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient identification of genomic insertions and flanking regions through whole-genome sequencing in three transgenic soybean events.
    Niu L; He H; Zhang Y; Yang J; Zhao Q; Xing G; Zhong X; Yang X
    Transgenic Res; 2021 Feb; 30(1):1-9. PubMed ID: 33393017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method.
    Guo B; Guo Y; Hong H; Qiu LJ
    Front Plant Sci; 2016; 7():1009. PubMed ID: 27462336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology.
    Siddique K; Wei J; Li R; Zhang D; Shi J
    Mol Biotechnol; 2019 Sep; 61(9):694-702. PubMed ID: 31256331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of flanking sequence in transgenic plants by restriction site-anchored single-primer polymerase chain reaction.
    Ma J; Wang NN; Ren S; Fu YP; Lu S; Wang YP; Wang PW
    Genet Mol Res; 2014 Dec; 13(4):10556-61. PubMed ID: 25511040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Combined Methods of Genetic Mapping and Nanopore-Based Sequencing Technology to Analyze the Insertion Positions of
    Peng C; Mei Y; Ding L; Wang X; Chen X; Wang J; Xu J
    Front Plant Sci; 2021; 12():690951. PubMed ID: 34394143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid rescue: recovery of flanking genomic sequences from transgenic transposon insertion sites.
    Nan GL; Walbot V
    Methods Mol Biol; 2009; 526():101-9. PubMed ID: 19377999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning flanking sequence by single-primer PCR in transgenic plants.
    Ma J; Wang YP; Ren S; Zhang Z; Lu S; Wang PW
    Genet Mol Res; 2014 Oct; 13(4):8403-10. PubMed ID: 25366734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of rice with large maize genomic DNA fragments containing high content repetitive sequences.
    Wang Y; Zeng H; Zhou X; Huang F; Peng W; Liu L; Xiong W; Shi X; Luo M
    Plant Cell Rep; 2015 Jun; 34(6):1049-61. PubMed ID: 25700981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.
    Park D; Park SH; Ban YW; Kim YS; Park KC; Kim NS; Kim JK; Choi IY
    BMC Biotechnol; 2017 Aug; 17(1):67. PubMed ID: 28810845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Next-generation sequencing is a robust strategy for the high-throughput detection of zygosity in transgenic maize.
    Fritsch L; Fischer R; Wambach C; Dudek M; Schillberg S; Schröper F
    Transgenic Res; 2015 Aug; 24(4):615-23. PubMed ID: 25648956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21.
    Thole V; Worland B; Wright J; Bevan MW; Vain P
    Plant Biotechnol J; 2010 Aug; 8(6):734-47. PubMed ID: 20374523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and isolation of Mu-flanking fragments from maize.
    Wang Y; Yin G; Yang Q; Tang J; Lu X; Korban SS; Xu M
    J Genet Genomics; 2008 Apr; 35(4):207-13. PubMed ID: 18439977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-genome resequencing using next-generation and Nanopore sequencing for molecular characterization of T-DNA integration in transgenic poplar 741.
    Chen X; Dong Y; Huang Y; Fan J; Yang M; Zhang J
    BMC Genomics; 2021 May; 22(1):329. PubMed ID: 33957867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the sorghum 10-member kafirin gene cluster in maize endosperm.
    Song R; Segal G; Messing J
    Nucleic Acids Res; 2004 Dec; 32(22):e189. PubMed ID: 15625231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of T-DNA structure and insertion site in transgenic crops using targeted capture sequencing.
    Magembe EM; Li H; Taheri A; Zhou S; Ghislain M
    Front Plant Sci; 2023; 14():1156665. PubMed ID: 37502707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data.
    Qu J; Liu J
    BMC Res Notes; 2013 Oct; 6():403. PubMed ID: 24099602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of 3' transgene insertion site and derived mRNAs in MON810 YieldGard maize.
    Rosati A; Bogani P; Santarlasci A; Buiatti M
    Plant Mol Biol; 2008 Jun; 67(3):271-81. PubMed ID: 18306044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pattern of somatic transposition in a high copy Ac tomato line.
    Belzile F; Yoder JI
    Plant J; 1992 Mar; 2(2):173-9. PubMed ID: 1338773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEAseq-based identification of 35,696 Dissociation insertional mutations facilitates functional genomic studies in maize.
    Lyu M; Liu H; Waititu JK; Sun Y; Wang H; Fu J; Chen Y; Liu J; Ku L; Cheng X
    J Genet Genomics; 2021 Nov; 48(11):961-971. PubMed ID: 34654681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.