These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 32276162)
1. Phytotoxicity of Cu Dong G; Nkoh JN; Hong ZN; Dong Y; Lu HL; Yang J; Pan XY; Xu RK Ecotoxicol Environ Saf; 2020 Jun; 196():110545. PubMed ID: 32276162 [TBL] [Abstract][Full Text] [Related]
2. Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Zhang Z; Ke M; Qu Q; Peijnenburg WJGM; Lu T; Zhang Q; Ye Y; Xu P; Du B; Sun L; Qian H Environ Pollut; 2018 Aug; 239():689-697. PubMed ID: 29715688 [TBL] [Abstract][Full Text] [Related]
3. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of Liu ZD; Zhou Q; Hong ZN; Xu RK Front Plant Sci; 2017; 8():1489. PubMed ID: 28970841 [TBL] [Abstract][Full Text] [Related]
4. Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics. Wang YM; Zhou DM; Yuan XY; Zhang XH; Li Y Chemosphere; 2018 May; 199():76-83. PubMed ID: 29433030 [TBL] [Abstract][Full Text] [Related]
5. Effect of root surface charge on the absorption and accumulation of Cu(II) by different japonica and indica rice varieties under acidic conditions. Biswash MR; Lu HL; Dong G; He X; Li JY; Xu RK Ecotoxicol Environ Saf; 2021 Oct; 223():112547. PubMed ID: 34330039 [TBL] [Abstract][Full Text] [Related]
6. Toxicity of cadmium to wheat seedling roots in the presence of graphene oxide. Gao M; YujuanYang ; Song Z Chemosphere; 2019 Oct; 233():9-16. PubMed ID: 31163310 [TBL] [Abstract][Full Text] [Related]
7. Relative abundance of chemical forms of Cu(II) and Cd(II) on soybean roots as influenced by pH, cations and organic acids. Zhou Q; Liu ZD; Liu Y; Jiang J; Xu RK Sci Rep; 2016 Nov; 6():36373. PubMed ID: 27805020 [TBL] [Abstract][Full Text] [Related]
8. Effect of Cd(II) adsorption onto rice roots on its uptake by different indica and japonica rice varieties and toxicity effect of Cd(II) under acidic conditions. Biswash MR; Li KW; Lu HL; Shi YX; Uwiringiyimana E; Guo L; Xu RK Environ Sci Pollut Res Int; 2024 May; 31(21):30399-30414. PubMed ID: 38607481 [TBL] [Abstract][Full Text] [Related]
9. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate. Wang P; Zhou D; Kinraide TB; Luo X; Li L; Li D; Zhang H Plant Physiol; 2008 Dec; 148(4):2134-43. PubMed ID: 18829983 [TBL] [Abstract][Full Text] [Related]
10. Application of measuring electrochemical characteristics on plant root surfaces in screening Al-tolerant wheat. Dong G; Lu HL; Pan XY; He X; Jiang J; Li JY; Xu RK Environ Pollut; 2021 Jul; 281():116993. PubMed ID: 33799210 [TBL] [Abstract][Full Text] [Related]
11. Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Versieren L; Evers S; AbdElgawad H; Asard H; Smolders E Environ Toxicol Chem; 2017 Jan; 36(1):220-230. PubMed ID: 27311849 [TBL] [Abstract][Full Text] [Related]
12. Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmium toxicity. Li DD; Zhou DM Ecotoxicol Environ Saf; 2012 May; 79():264-271. PubMed ID: 22284823 [TBL] [Abstract][Full Text] [Related]
13. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Chen Q; Lu X; Guo X; Pan Y; Yu B; Tang Z; Guo Q Ecotoxicol Environ Saf; 2018 Aug; 157():266-275. PubMed ID: 29626640 [TBL] [Abstract][Full Text] [Related]
14. Activation of a gene network in durum wheat roots exposed to cadmium. Aprile A; Sabella E; Vergine M; Genga A; Siciliano M; Nutricati E; Rampino P; De Pascali M; Luvisi A; Miceli A; Negro C; De Bellis L BMC Plant Biol; 2018 Oct; 18(1):238. PubMed ID: 30326849 [TBL] [Abstract][Full Text] [Related]
15. Differences in root surface adsorption, root uptake, subcellular distribution, and chemical forms of Cd between low- and high-Cd-accumulating wheat cultivars. Xiao YT; Du ZJ; Busso CA; Qi XB; Wu HQ; Guo W; Wu DF Environ Sci Pollut Res Int; 2020 Jan; 27(2):1417-1427. PubMed ID: 31749002 [TBL] [Abstract][Full Text] [Related]
16. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297 [TBL] [Abstract][Full Text] [Related]
17. Predicting the combined toxicity of binary metal mixtures (Cu-Ni and Zn-Ni) to wheat. Wang X; Luo X; Wang Q; Liu Y; Naidu R Ecotoxicol Environ Saf; 2020 Dec; 205():111334. PubMed ID: 32961486 [TBL] [Abstract][Full Text] [Related]
18. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. López-Luna J; Silva-Silva MJ; Martinez-Vargas S; Mijangos-Ricardez OF; González-Chávez MC; Solís-Domínguez FA; Cuevas-Díaz MC Sci Total Environ; 2016 Sep; 565():941-950. PubMed ID: 26806072 [TBL] [Abstract][Full Text] [Related]
19. Effect of culturing temperatures on cadmium phytotoxicity alleviation by biochar. Qian L; Chen B; Han L; Yan J; Zhang W; Su A; Chen M Environ Sci Pollut Res Int; 2017 Oct; 24(30):23843-23849. PubMed ID: 28868590 [TBL] [Abstract][Full Text] [Related]
20. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Rizvi A; Khan MS Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]