These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32276458)

  • 1. Cross-Flow Microfiltration of Glycerol Fermentation Broths with
    Tomczak W; Gryta M
    Membranes (Basel); 2020 Apr; 10(4):. PubMed ID: 32276458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Polypropylene and Ceramic Microfiltration Membranes Applied for Separation of 1,3-PD Fermentation Broths and
    Tomczak W; Gryta M
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33435635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clarification of 1,3-Propanediol Fermentation Broths by Using a Ceramic Fine UF Membrane.
    Tomczak W; Gryta M
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33143063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of fermentation conditions and microfiltration processes on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths.
    Harscoat C; Jaffrin MY; Bouzerar R; Courtois J
    Biotechnol Bioeng; 1999 Dec; 65(5):500-11. PubMed ID: 10516575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-phase bioconversion product recovery by microfiltration I. Steady state studies.
    Conrad PB; Lee SS
    Biotechnol Bioeng; 1998 Mar; 57(6):631-41. PubMed ID: 10099243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65°C.
    Hurt EE; Adams MC; Barbano DM
    J Dairy Sci; 2015 Feb; 98(2):765-80. PubMed ID: 25497798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk.
    Fritsch J; Moraru CI
    J Dairy Sci; 2008 Oct; 91(10):3744-60. PubMed ID: 18832196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Membrane Pore Size on the Clarification Performance of Grape Marc Extract by Microfiltration.
    Mora F; Pérez K; Quezada C; Herrera C; Cassano A; Ruby-Figueroa R
    Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31698840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the efficiency of removal of whey protein from sweet whey with ceramic microfiltration membranes.
    Carter B; DiMarzo L; Pranata J; Barbano DM; Drake M
    J Dairy Sci; 2021 Jul; 104(7):7534-7543. PubMed ID: 33814142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physicochemical investigation of membrane fouling in cold microfiltration of skim milk.
    Tan TJ; Wang D; Moraru CI
    J Dairy Sci; 2014; 97(8):4759-71. PubMed ID: 24881794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Cleaning on Membrane Performance during Surface Water Treatment: A Hybrid Process with Biological Ion Exchange and Gravity-Driven Membranes.
    Rasouli Y; Barbeau B; Maltais-Tariant R; Boudoux C; Claveau-Mallet D
    Membranes (Basel); 2024 Jan; 14(2):. PubMed ID: 38392660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization.
    Jokić A; Lukić N; Pajčin I; Vlajkov V; Dmitrović S; Grahovac J
    Membranes (Basel); 2022 Jul; 12(7):. PubMed ID: 35877892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Cellulose Acetate Membranes for Separation of Fermentation Broths by the Reverse Osmosis: A Feasibility Study.
    Tomczak W; Gryta M
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of NaOH Solutions for Fouling Control in a Membrane Bioreactor: A Feasibility Study.
    Tomczak W; Grubecki I; Gryta M
    Membranes (Basel); 2021 Nov; 11(11):. PubMed ID: 34832116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Viscosity on Submerged Membrane Microfiltration Systems.
    Pradhan M; Johir MAH; Kandasamy J; Ratnaweera H; Vigneswaran S
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online colloidal particle monitoring for controlled coagulation pretreatment to lower microfiltration membrane fouling at a potable water reuse facility.
    Safaee H; Bracewell A; Safarik J; Plumlee MH; Rajagopalan G
    Water Res; 2022 Jun; 217():118300. PubMed ID: 35397369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7527-43. PubMed ID: 26298765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microfiltration concentration factor on serum protein removal from skim milk using spiral-wound polymeric membranes.
    Beckman SL; Barbano DM
    J Dairy Sci; 2013 Oct; 96(10):6199-212. PubMed ID: 23891300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.