These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Induced motion: isolation and dissociation of egocentric and vection-entrained components. Heckmann T; Howard IP Perception; 1991; 20(3):285-305. PubMed ID: 1762872 [TBL] [Abstract][Full Text] [Related]
7. Induced motion of a fixated target: influence of voluntary eye deviation. Heckmann T; Post RB; Deering L Percept Psychophys; 1991 Sep; 50(3):230-6. PubMed ID: 1754364 [TBL] [Abstract][Full Text] [Related]
8. Eye movements and the motion aftereffect: alternatives to the induced motion hypothesis. Chaudhuri A Vision Res; 1991; 31(9):1639-45. PubMed ID: 1949633 [TBL] [Abstract][Full Text] [Related]
9. Slow eye movements induced by apparent target motion in monkey. Waespe W; Schwarz U Exp Brain Res; 1987; 67(2):433-5. PubMed ID: 3622700 [TBL] [Abstract][Full Text] [Related]
10. Contribution of the nucleus of the optic tract to optokinetic nystagmus and optokinetic afternystagmus in the monkey: clinical implications. Cohen B; Schiff D; Buettner J Res Publ Assoc Res Nerv Ment Dis; 1990; 67():233-55. PubMed ID: 2106153 [TBL] [Abstract][Full Text] [Related]
11. Optokinetic nystagmus and afternystagmus in human beings: relationship to nonlinear processing of information about retinal slip. Fletcher WA; Hain TC; Zee DS Exp Brain Res; 1990; 81(1):46-52. PubMed ID: 2394230 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. Cohen B; Matsuo V; Raphan T J Physiol; 1977 Sep; 270(2):321-44. PubMed ID: 409838 [TBL] [Abstract][Full Text] [Related]
13. Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Büttner U; Waespe W Exp Brain Res; 1984; 55(1):97-104. PubMed ID: 6745359 [TBL] [Abstract][Full Text] [Related]
14. Three methods to elicit sigma-optokinetic nystagmus in Java monkeys. Grüsser OJ; Pause M; Schreiter U Exp Brain Res; 1979 May; 35(3):519-26. PubMed ID: 110612 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the horizontal, vertical, and oblique optokinetic nystagmus and afternystagmus in squirrel monkeys. Kröller J; Behrens F J Vestib Res; 1995; 5(3):171-86. PubMed ID: 7627377 [TBL] [Abstract][Full Text] [Related]
16. Implications of OKN suppression by smooth pursuit for induced motion. Post RB; Shupert CL; Leibowitz HW Percept Psychophys; 1984 Nov; 36(5):493-8. PubMed ID: 6533574 [No Abstract] [Full Text] [Related]
17. A reevaluation of the effect of velocity on induced motion. Post RB; Chi D; Heckmann T; Chaderjian M Percept Psychophys; 1989 May; 45(5):411-6. PubMed ID: 2726403 [TBL] [Abstract][Full Text] [Related]
18. Pursuit afternystagmus asymmetry in humans. Chaudhuri A Exp Brain Res; 1991; 83(3):471-6. PubMed ID: 2026189 [TBL] [Abstract][Full Text] [Related]
19. Optokinetic nystagmus and spatial-selective attention. An experimental study. Crevits L; van Vliet AG Ophthalmologica; 1991; 202(2):105-8. PubMed ID: 2057193 [TBL] [Abstract][Full Text] [Related]
20. Human optokinetic afternystagmus. Slow-phase characteristics and analysis of the decay of slow-phase velocity. Jell RM; Ireland DJ; Lafortune S Acta Otolaryngol; 1984; 98(5-6):462-71. PubMed ID: 6524342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]