These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32276473)

  • 1. The Role of Triacylglycerol in Plant Stress Response.
    Lu J; Xu Y; Wang J; Singer SD; Chen G
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32276473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions.
    Nam JW; Lee HG; Do H; Kim HU; Seo PJ
    J Exp Bot; 2022 May; 73(9):2905-2917. PubMed ID: 35560201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid
    Fan J; Yu L; Xu C
    Plant Physiol; 2017 Jul; 174(3):1517-1530. PubMed ID: 28572457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass.
    Zale J; Jung JH; Kim JY; Pathak B; Karan R; Liu H; Chen X; Wu H; Candreva J; Zhai Z; Shanklin J; Altpeter F
    Plant Biotechnol J; 2016 Feb; 14(2):661-9. PubMed ID: 26058948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FUSCA3 activates triacylglycerol accumulation in Arabidopsis seedlings and tobacco BY2 cells.
    Zhang M; Cao X; Jia Q; Ohlrogge J
    Plant J; 2016 Oct; 88(1):95-107. PubMed ID: 27288837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae.
    Xu Y; Caldo KMP; Pal-Nath D; Ozga J; Lemieux MJ; Weselake RJ; Chen G
    Lipids; 2018 Jul; 53(7):663-688. PubMed ID: 30252128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The
    Lee HG; Park ME; Park BY; Kim HU; Seo PJ
    Plants (Basel); 2019 Aug; 8(9):. PubMed ID: 31443427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.
    Xu C; Shanklin J
    Annu Rev Plant Biol; 2016 Apr; 67():179-206. PubMed ID: 26845499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii.
    Hidayati NA; Yamada-Oshima Y; Iwai M; Yamano T; Kajikawa M; Sakurai N; Suda K; Sesoko K; Hori K; Obayashi T; Shimojima M; Fukuzawa H; Ohta H
    Plant J; 2019 Nov; 100(3):610-626. PubMed ID: 31350858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein interactomes for plant lipid biosynthesis and their biotechnological applications.
    Xu Y; Singer SD; Chen G
    Plant Biotechnol J; 2023 Sep; 21(9):1734-1744. PubMed ID: 36762506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and functions of membrane lipid remodeling in plants.
    Yu L; Zhou C; Fan J; Shanklin J; Xu C
    Plant J; 2021 Jul; 107(1):37-53. PubMed ID: 33853198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology.
    Wang K; Durrett TP; Benning C
    Prog Lipid Res; 2019 Jul; 75():100987. PubMed ID: 31078649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp.
    Kilaru A; Cao X; Dabbs PB; Sung HJ; Rahman MM; Thrower N; Zynda G; Podicheti R; Ibarra-Laclette E; Herrera-Estrella L; Mockaitis K; Ohlrogge JB
    BMC Plant Biol; 2015 Aug; 15():203. PubMed ID: 26276496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae.
    Teixeira PG; David F; Siewers V; Nielsen J
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29897501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds.
    Lunn D; Wallis JG; Browse J
    Plant Cell Physiol; 2018 Jan; 59(1):205-214. PubMed ID: 29149288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.
    Cai Y; McClinchie E; Price A; Nguyen TN; Gidda SK; Watt SC; Yurchenko O; Park S; Sturtevant D; Mullen RT; Dyer JM; Chapman KD
    Plant Biotechnol J; 2017 Jul; 15(7):824-836. PubMed ID: 27987528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.
    Zienkiewicz K; Du ZY; Ma W; Vollheyde K; Benning C
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1269-1281. PubMed ID: 26883557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of high leaf-oil Arabidopsis thaliana plant lines to biotic or abiotic stress.
    Yurchenko O; Kimberlin A; Mehling M; Koo AJ; Chapman KD; Mullen RT; Dyer JM
    Plant Signal Behav; 2018; 13(5):e1464361. PubMed ID: 29701541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants.
    Shimojima M; Madoka Y; Fujiwara R; Murakawa M; Yoshitake Y; Ikeda K; Koizumi R; Endo K; Ozaki K; Ohta H
    Front Plant Sci; 2015; 6():664. PubMed ID: 26379690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions.
    Brocard L; Immel F; Coulon D; Esnay N; Tuphile K; Pascal S; Claverol S; Fouillen L; Bessoule JJ; Bréhélin C
    Front Plant Sci; 2017; 8():894. PubMed ID: 28611809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.