These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 32277083)
1. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification. Zhang Z; Wang Y; Ding Y; Hattori M Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083 [TBL] [Abstract][Full Text] [Related]
2. Structural insights into two distinct nanobodies recognizing the same epitope of green fluorescent protein. Zhong P; Wang Z; Cheng S; Zhang Y; Jiang H; Liu R; Ding Y Biochem Biophys Res Commun; 2021 Aug; 565():57-63. PubMed ID: 34098312 [TBL] [Abstract][Full Text] [Related]
3. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Weng D; Yang L; Xie Y Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081 [TBL] [Abstract][Full Text] [Related]
5. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. Kubala MH; Kovtun O; Alexandrov K; Collins BM Protein Sci; 2010 Dec; 19(12):2389-401. PubMed ID: 20945358 [TBL] [Abstract][Full Text] [Related]
6. High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices. Cong ATQ; Witter TL; Schellenberg MJ Protein Sci; 2022 Sep; 31(9):e4383. PubMed ID: 36040252 [TBL] [Abstract][Full Text] [Related]
7. Extreme thermal stability of the antiGFP nanobody - GFP complex. Kakasi B; Gácsi E; Jankovics H; Vonderviszt F BMC Res Notes; 2023 Jun; 16(1):110. PubMed ID: 37340471 [TBL] [Abstract][Full Text] [Related]
8. Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography. Ren J; Zhang C; Ji F; Jia L J Chromatogr A; 2020 Aug; 1624():461227. PubMed ID: 32540069 [TBL] [Abstract][Full Text] [Related]
9. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology. Matsuda S; Aguilar G; Vigano MA; Affolter M Methods Mol Biol; 2022; 2446():581-593. PubMed ID: 35157295 [TBL] [Abstract][Full Text] [Related]
10. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes. Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295 [TBL] [Abstract][Full Text] [Related]
11. Development and production of nanobodies specifically against green fluorescence protein. Fang Z; Cao D; Qiu J Appl Microbiol Biotechnol; 2020 Jun; 104(11):4837-4848. PubMed ID: 32270250 [TBL] [Abstract][Full Text] [Related]
12. Nanobody-Displaying Flagellar Nanotubes. Klein Á; Kovács M; Muskotál A; Jankovics H; Tóth B; Pósfai M; Vonderviszt F Sci Rep; 2018 Feb; 8(1):3584. PubMed ID: 29483707 [TBL] [Abstract][Full Text] [Related]
13. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity. Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225 [TBL] [Abstract][Full Text] [Related]
14. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries. Ferrari D; Garrapa V; Locatelli M; Bolchi A Mol Biotechnol; 2020 Jan; 62(1):43-55. PubMed ID: 31720928 [TBL] [Abstract][Full Text] [Related]
15. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches. Farasat A; Rahbarizadeh F; Hosseinzadeh G; Sajjadi S; Kamali M; Keihan AH J Biomol Struct Dyn; 2017 Jun; 35(8):1710-1728. PubMed ID: 27691399 [TBL] [Abstract][Full Text] [Related]
16. Unintended perturbation of protein function using GFP nanobodies in human cells. Küey C; Larocque G; Clarke NI; Royle SJ J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31601614 [TBL] [Abstract][Full Text] [Related]
17. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. Ramirez DH; Aonbangkhen C; Wu HY; Naftaly JA; Tang S; O'Meara TR; Woo CM ACS Chem Biol; 2020 Apr; 15(4):1059-1066. PubMed ID: 32119511 [TBL] [Abstract][Full Text] [Related]
18. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. Daniel K; Icha J; Horenburg C; Müller D; Norden C; Mansfeld J Nat Commun; 2018 Aug; 9(1):3297. PubMed ID: 30120238 [TBL] [Abstract][Full Text] [Related]
19. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes. Fridy PC; Thompson MK; Ketaren NE; Rout MP Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320 [TBL] [Abstract][Full Text] [Related]
20. A robust pipeline for rapid production of versatile nanobody repertoires. Fridy PC; Li Y; Keegan S; Thompson MK; Nudelman I; Scheid JF; Oeffinger M; Nussenzweig MC; Fenyö D; Chait BT; Rout MP Nat Methods; 2014 Dec; 11(12):1253-60. PubMed ID: 25362362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]