BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32277083)

  • 1. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into two distinct nanobodies recognizing the same epitope of green fluorescent protein.
    Zhong P; Wang Z; Cheng S; Zhang Y; Jiang H; Liu R; Ding Y
    Biochem Biophys Res Commun; 2021 Aug; 565():57-63. PubMed ID: 34098312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis.
    Weng D; Yang L; Xie Y
    Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide barcoding for one-pot evaluation of sequence-function relationships of nanobodies.
    Matsuzaki Y; Aoki W; Miyazaki T; Aburaya S; Ohtani Y; Kajiwara K; Koike N; Minakuchi H; Miura N; Kadonosono T; Ueda M
    Sci Rep; 2021 Nov; 11(1):21516. PubMed ID: 34728738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex.
    Kubala MH; Kovtun O; Alexandrov K; Collins BM
    Protein Sci; 2010 Dec; 19(12):2389-401. PubMed ID: 20945358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency recombinant protein purification using mCherry and YFP nanobody affinity matrices.
    Cong ATQ; Witter TL; Schellenberg MJ
    Protein Sci; 2022 Sep; 31(9):e4383. PubMed ID: 36040252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme thermal stability of the antiGFP nanobody - GFP complex.
    Kakasi B; Gácsi E; Jankovics H; Vonderviszt F
    BMC Res Notes; 2023 Jun; 16(1):110. PubMed ID: 37340471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and comparison of two peptide-tag specific nanobodies for immunoaffinity chromatography.
    Ren J; Zhang C; Ji F; Jia L
    J Chromatogr A; 2020 Aug; 1624():461227. PubMed ID: 32540069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology.
    Matsuda S; Aguilar G; Vigano MA; Affolter M
    Methods Mol Biol; 2022; 2446():581-593. PubMed ID: 35157295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and production of nanobodies specifically against green fluorescence protein.
    Fang Z; Cao D; Qiu J
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4837-4848. PubMed ID: 32270250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanobody-Displaying Flagellar Nanotubes.
    Klein Á; Kovács M; Muskotál A; Jankovics H; Tóth B; Pósfai M; Vonderviszt F
    Sci Rep; 2018 Feb; 8(1):3584. PubMed ID: 29483707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity.
    Wendel S; Fischer EC; Martínez V; Seppälä S; Nørholm MH
    Microb Cell Fact; 2016 May; 15():71. PubMed ID: 27142225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Nanobody Scaffold Optimized for Bacterial Expression and Suitable for the Construction of Ribosome Display Libraries.
    Ferrari D; Garrapa V; Locatelli M; Bolchi A
    Mol Biotechnol; 2020 Jan; 62(1):43-55. PubMed ID: 31720928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.
    Farasat A; Rahbarizadeh F; Hosseinzadeh G; Sajjadi S; Kamali M; Keihan AH
    J Biomol Struct Dyn; 2017 Jun; 35(8):1710-1728. PubMed ID: 27691399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unintended perturbation of protein function using GFP nanobodies in human cells.
    Küey C; Larocque G; Clarke NI; Royle SJ
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31601614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells.
    Ramirez DH; Aonbangkhen C; Wu HY; Naftaly JA; Tang S; O'Meara TR; Woo CM
    ACS Chem Biol; 2020 Apr; 15(4):1059-1066. PubMed ID: 32119511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody.
    Daniel K; Icha J; Horenburg C; Müller D; Norden C; Mansfeld J
    Nat Commun; 2018 Aug; 9(1):3297. PubMed ID: 30120238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes.
    Fridy PC; Thompson MK; Ketaren NE; Rout MP
    Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust pipeline for rapid production of versatile nanobody repertoires.
    Fridy PC; Li Y; Keegan S; Thompson MK; Nudelman I; Scheid JF; Oeffinger M; Nussenzweig MC; Fenyö D; Chait BT; Rout MP
    Nat Methods; 2014 Dec; 11(12):1253-60. PubMed ID: 25362362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.