These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32277091)

  • 1. Molecular Orientation in a Variable-Focus Liquid Crystal Lens Induced by Ultrasound Vibration.
    Harada Y; Koyama D; Fukui M; Emoto A; Nakamura K; Matsukawa M
    Sci Rep; 2020 Apr; 10(1):6168. PubMed ID: 32277091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic liquid crystal tunable light diffuser.
    Kuroda Y; Mizuno R; Koyama D
    Sci Rep; 2024 Jul; 14(1):15445. PubMed ID: 38965408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound liquid crystal lens with a variable focus in the radial direction for image stabilization.
    Onaka J; Iwase T; Emoto A; Koyama D; Matsukawa M
    Appl Opt; 2021 Nov; 60(33):10365-10371. PubMed ID: 34807045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varifocal optical lens using ultrasonic vibration and thixotropic gel.
    Sakata D; Iwase T; Onaka J; Koyama D; Matsukawa M
    J Acoust Soc Am; 2021 Jun; 149(6):3954. PubMed ID: 34241470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Varifocal Concave-Convex Lens Using Viscoelastic Gel and Ultrasound Vibration.
    Hashimoto S; Harada Y; Nakamura K; Iwase T; Onaka J; Matsukawa M; Koyama D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2703-2710. PubMed ID: 35905066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel switching mode in a vertically aligned liquid crystal contact lens.
    Syed IM; Kaur S; Milton HE; Mistry D; Bailey J; Morgan PB; Jones JC; Gleeson HF
    Opt Express; 2015 Apr; 23(8):9911-6. PubMed ID: 25969032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound liquid crystal lens with enlarged aperture using traveling waves.
    Onaka J; Iwase T; Fukui M; Koyama D; Matsukawa M
    Opt Lett; 2021 Mar; 46(5):1169-1172. PubMed ID: 33649684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesive cell patterning technique using ultrasound vibrations.
    Tani K; Fujiwara K; Koyama D
    Ultrasonics; 2019 Jul; 96():18-23. PubMed ID: 30939389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency characteristics of an ultrasonic varifocal liquid crystal lens.
    Kuroda Y; Harada Y; Emoto A; Matsukawa M; Koyama D
    Appl Opt; 2024 Mar; 63(9):2256-2262. PubMed ID: 38568580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of an optical lens array using ultraviolet light and ultrasonication.
    Taniguchi S; Koyama D; Nakamura K; Matsukawa M
    Ultrasonics; 2015 Apr; 58():22-6. PubMed ID: 25497498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable transmission of a nematic liquid crystal as defect in a 1D periodic structure of dielectric materials by orientation and re-orientation of liquid crystal molecules.
    Singh P; Thapa KB; Kumar N; Kumar D
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):100. PubMed ID: 30159778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact, high-speed variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    Opt Express; 2010 Nov; 18(24):25158-69. PubMed ID: 21164862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric ceramic rectangular transducers in flexural vibration.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):865-70. PubMed ID: 15301006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional variable-focus liquid lens using acoustic radiation force.
    Koyama D; Isago R; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2720-6. PubMed ID: 23443707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive liquid crystal lens with large focal length tunability.
    Ren H; Wu ST
    Opt Express; 2006 Nov; 14(23):11292-8. PubMed ID: 19529544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of spatial polarization by use of a liquid crystal with an optically treated alignment layer and its application to beam apodization.
    Sueda K; Tsubakimoto K; Miyanaga N; Nakatsuka M
    Appl Opt; 2005 Jun; 44(18):3752-8. PubMed ID: 15989050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative dispersion of birefringence in two-dimensionally self-organized smectic liquid crystal and monomer thin film.
    Lee H; Lee JH
    Opt Lett; 2014 Sep; 39(17):5146-9. PubMed ID: 25166095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Orientation of Liquid Crystal on 4-
    Seo K; Kang H
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33673579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of the acoustic realignment of nematic liquid crystals.
    Malanoski AP; Greanya VA; Weslowski BT; Spector MS; Selinger JV; Shashidhar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021705. PubMed ID: 14995467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large aperture liquid crystal lens array using a composited alignment layer.
    Dou H; Chu F; Guo YQ; Tian LL; Wang QH; Sun YB
    Opt Express; 2018 Apr; 26(7):9254-9262. PubMed ID: 29715879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.