BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32277324)

  • 1. RNAi of the nuclear receptor HR3 suggests a role in the molting process of the spider mite Panonychus citri.
    Li G; Liu XY; Han X; Niu JZ; Wang JJ
    Exp Appl Acarol; 2020 May; 81(1):75-83. PubMed ID: 32277324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and expression patterns of key ecdysteroid biosynthesis and signaling genes in a spider mite (Panonychus citri).
    Li G; Niu JZ; Zotti M; Sun QZ; Zhu L; Zhang J; Liao CY; Dou W; Wei DD; Wang JJ; Smagghe G
    Insect Biochem Mol Biol; 2017 Aug; 87():136-146. PubMed ID: 28645488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molting process revealed by the detailed expression profiles of RXR1/RXR2 and mining the associated genes in a spider mite, Panonychus citri.
    Li G; Liu XY; Smagghe G; Niu JZ; Wang JJ
    Insect Sci; 2022 Apr; 29(2):430-442. PubMed ID: 34015180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Characterization and Identification of Long Non-Coding RNAs during the Molting Process of a Spider Mite,
    Li G; Liu X; Smagghe G; Niu J; Wang J
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34199120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nuclear receptor gene E75 plays a key role in regulating the molting process of the spider mite, Tetranychus urticae.
    Li Z; Wang L; Yi T; Liu D; Li G; Jin DC
    Exp Appl Acarol; 2024 Jan; 92(1):1-11. PubMed ID: 38112881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecdysone and retinoid-X receptors of the blue crab, Callinectes sapidus: cloning and their expression patterns in eyestalks and Y-organs during the molt cycle.
    Techa S; Chung JS
    Gene; 2013 Sep; 527(1):139-53. PubMed ID: 23764560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae.
    Li G; Sun QZ; Liu XY; Zhang J; Dou W; Niu JZ; Wang JJ
    Exp Appl Acarol; 2019 Jul; 78(3):361-372. PubMed ID: 31254229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of a chitinase gene during the larval-nymph transition in Panonychus citri by RNA interference.
    Xia WK; Shen XM; Ding TB; Niu JZ; Zhong R; Liao CY; Feng YC; Dou W; Wang JJ
    Exp Appl Acarol; 2016 Sep; 70(1):1-15. PubMed ID: 27388447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA Interference-Based Silencing of the
    Ali MW; Khan MM; Song F; Wu L; He L; Wang Z; Zhang ZY; Zhang H; Jiang Y
    Insects; 2020 Nov; 11(11):. PubMed ID: 33187256
    [No Abstract]   [Full Text] [Related]  

  • 10. Arthropod nuclear receptors and their role in molting.
    Nakagawa Y; Henrich VC
    FEBS J; 2009 Nov; 276(21):6128-57. PubMed ID: 19796154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Shift Pattern of Bacterial Communities Across the Life Stages of the Citrus Red Mite,
    Zhang ZY; Ali MW; Saqib HSA; Liu SX; Yang X; Li Q; Zhang H
    Front Microbiol; 2020; 11():1620. PubMed ID: 32754145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctional analysis of Vitellogenin and Vitellogenin receptor in citrus red mites, Panonychus citri by RNA interference.
    Ali MW; Zhang ZY; Xia S; Zhang H
    Sci Rep; 2017 Nov; 7(1):16123. PubMed ID: 29170435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of ecdysis triggering hormone and its receptor in citrus red mite (Panonychus citri).
    Zhu L; Zhang W; Li G; Sun QZ; Wang JJ; Smagghe G; Jiang HB
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Apr; 230():100-105. PubMed ID: 30659951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublethal and transgenerational effects of lufenuron on the biological traits of Panonychus citri (McGregor) (Acari: Tetranychidae).
    Xia MH; Pan D; Li CZ; Li YC; Dou W; Wang JJ
    Pestic Biochem Physiol; 2024 Jan; 198():105727. PubMed ID: 38225066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to diflubenzuron results in an up-regulation of a chitin synthase 1 gene in citrus red mite, Panonychus citri (Acari: Tetranychidae).
    Xia WK; Ding TB; Niu JZ; Liao CY; Zhong R; Yang WJ; Liu B; Dou W; Wang JJ
    Int J Mol Sci; 2014 Feb; 15(3):3711-28. PubMed ID: 24590130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterisation of a sodium channel gene and identification of a Phe1538 to Ile mutation in citrus red mite, Panonychus citri.
    Ding TB; Zhong R; Jiang XZ; Liao CY; Xia WK; Liu B; Dou W; Wang JJ
    Pest Manag Sci; 2015 Feb; 71(2):266-77. PubMed ID: 24753229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae).
    Ouyang Y; Montez GH; Liu L; Grafton-Cardwell EE
    Pest Manag Sci; 2012 May; 68(5):781-7. PubMed ID: 22102515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of Panonychus citri microRNAs with a focus on potential insecticidal activity of 4 microRNAs to eggs and nymphs.
    Li CZ; Liu YH; Pan D; Xia MH; Zhang Q; Li YC; Yuan GR; Wang JJ; Dou W
    Insect Sci; 2024 Apr; 31(2):354-370. PubMed ID: 37641867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abamectin treatment affects glutamate decarboxylase expression and induces higher GABA levels in the citrus red mite, Panonychus citri.
    Dou W; Xia WK; Niu JZ; Wang JJ
    Exp Appl Acarol; 2017 Jul; 72(3):229-244. PubMed ID: 28656486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetry in the reproductive interference between two closely related species of spider mites, Panonychus citri and Panonychus osmanthi (Prostigmata: Tetranychidae).
    Oide Y; Osakabe M
    Exp Appl Acarol; 2023 Aug; 90(3-4):247-266. PubMed ID: 37470937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.