BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32277472)

  • 1. Technical Note: Taking EGSnrc to new lows: Development of egs++ lattice geometry and testing with microscopic geometries.
    Martinov MP; Thomson RM
    Med Phys; 2020 Jul; 47(7):3225-3232. PubMed ID: 32277472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models.
    Martinov MP; Fletcher EM; Thomson RM
    Med Phys; 2023 Sep; 50(9):5853-5864. PubMed ID: 37211878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fano cavity test for electron Monte Carlo transport algorithms in magnetic fields: comparison between EGSnrc, PENELOPE, MCNP6 and Geant4.
    Lee J; Lee J; Ryu D; Lee H; Ye SJ
    Phys Med Biol; 2018 Oct; 63(19):195013. PubMed ID: 30183683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast beta-emitter Monte Carlo simulations and full patient dose calculations of targeted radionuclide therapy: introducing egs_mird.
    Martinov MP; Opara C; Thomson RM; Lee TY
    Med Phys; 2022 Sep; 49(9):6137-6149. PubMed ID: 35650012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fano cavity test for Monte Carlo proton transport algorithms.
    Sterpin E; Sorriaux J; Souris K; Vynckier S; Bouchard H
    Med Phys; 2014 Jan; 41(1):011706. PubMed ID: 24387498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
    Chamberland MJ; Taylor RE; Rogers DW; Thomson RM
    Phys Med Biol; 2016 Dec; 61(23):8214-8231. PubMed ID: 27804922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Monte Carlo simulations of the electron transport in external magnetic fields using Fano cavity test.
    Alissa M; Zink K; Czarnecki D
    Z Med Phys; 2023 Nov; 33(4):499-510. PubMed ID: 36030166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles.
    Failing T; Hartmann GH; Hensley FW; Keil B; Zink K
    Z Med Phys; 2022 Nov; 32(4):417-427. PubMed ID: 35643800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations.
    Jones BL; Krishnan S; Cho SH
    Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an adapted Fano cavity test for Monte Carlo simulations in the presence of B-fields.
    de Pooter JA; de Prez LA; Bouchard H
    Phys Med Biol; 2015 Dec; 60(24):9313-27. PubMed ID: 26580846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes.
    Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J
    Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOPAS/Geant4 configuration for ionization chamber calculations in proton beams.
    Wulff J; Baumann KS; Verbeek N; Bäumer C; Timmermann B; Zink K
    Phys Med Biol; 2018 Jun; 63(11):115013. PubMed ID: 29737969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric consequences of gold nanoparticle clustering during photon irradiation.
    Kirkby C; Koger B; Suchowerska N; McKenzie DR
    Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies.
    Faddegon BA; Asai M; Perl J; Ross C; Sempau J; Tinslay J; Salvat F
    Med Phys; 2008 Oct; 35(10):4308-17. PubMed ID: 18975676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSnrc: correlated sampling Monte Carlo calculations using EGSnrc.
    Buckley LA; Kawrakow I; Rogers DW
    Med Phys; 2004 Dec; 31(12):3425-35. PubMed ID: 15651625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes.
    Li WB; Belchior A; Beuve M; Chen YZ; Di Maria S; Friedland W; Gervais B; Heide B; Hocine N; Ipatov A; Klapproth AP; Li CY; Li JL; Multhoff G; Poignant F; Qiu R; Rabus H; Rudek B; Schuemann J; Stangl S; Testa E; Villagrasa C; Xie WZ; Zhang YB
    Phys Med; 2020 Jan; 69():147-163. PubMed ID: 31918367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical Note: Implications of using EGSnrc instead of EGS4 for extracting electron stopping powers from measured energy spectra.
    Tessier F; Ross CK
    Med Phys; 2021 Apr; 48(4):1996-2003. PubMed ID: 33125734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.