These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32277961)
1. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. Wu L; Bai Y; Wang L; Liu X; Zhou R; Li L; Wu R; Zhang Z; Zhu X; Huang Y J Control Release; 2020 Jul; 323():151-160. PubMed ID: 32277961 [TBL] [Abstract][Full Text] [Related]
2. Transport Mechanisms of Butyrate Modified Nanoparticles: Insight into "Easy Entry, Hard Transcytosis" of Active Targeting System in Oral Administration. Wu L; Bai Y; Liu M; Li L; Shan W; Zhang Z; Huang Y Mol Pharm; 2018 Sep; 15(9):4273-4283. PubMed ID: 30102863 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway. Zheng Y; Wu J; Shan W; Wu L; Zhou R; Liu M; Cui Y; Zhou M; Zhang Z; Huang Y ACS Appl Mater Interfaces; 2018 Oct; 10(40):34039-34049. PubMed ID: 30207680 [TBL] [Abstract][Full Text] [Related]
4. The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of "easy uptake hard transcytosis" of ligand-modified nanoparticles in oral drug delivery. Cui Y; Shan W; Zhou R; Liu M; Wu L; Guo Q; Zheng Y; Wu J; Huang Y Nanoscale; 2018 Jan; 10(3):1494-1507. PubMed ID: 29303184 [TBL] [Abstract][Full Text] [Related]
6. Tyrphostin-8 enhances transferrin receptor-mediated transcytosis in Caco-2- cells and inreases hypoglycemic effect of orally administered insulin-transferrin conjugate in diabetic rats. Xia CQ; Shen WC Pharm Res; 2001 Feb; 18(2):191-5. PubMed ID: 11405290 [TBL] [Abstract][Full Text] [Related]
7. Angiopep-2-functionalized nanoparticles enhance transport of protein drugs across intestinal epithelia by self-regulation of targeted receptors. Liu X; Wu R; Li Y; Wang L; Zhou R; Li L; Xiang Y; Wu J; Xing L; Huang Y Biomater Sci; 2021 Apr; 9(8):2903-2916. PubMed ID: 33599658 [TBL] [Abstract][Full Text] [Related]
8. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. Xing L; Zheng Y; Yu Y; Wu R; Liu X; Zhou R; Huang Y J Mater Chem B; 2021 Feb; 9(6):1707-1718. PubMed ID: 33496710 [TBL] [Abstract][Full Text] [Related]
9. Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. Xi Z; Ahmad E; Zhang W; Li J; Wang A; Faridoon ; Wang N; Zhu C; Huang W; Xu L; Yu M; Gan Y J Control Release; 2022 Feb; 342():1-13. PubMed ID: 34864116 [TBL] [Abstract][Full Text] [Related]
10. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. He B; Lin P; Jia Z; Du W; Qu W; Yuan L; Dai W; Zhang H; Wang X; Wang J; Zhang X; Zhang Q Biomaterials; 2013 Aug; 34(25):6082-98. PubMed ID: 23694903 [TBL] [Abstract][Full Text] [Related]
11. Enhanced oral and pulmonary delivery of biomacromolecules via amplified transporter targeting. Xiao X; Zhang L; Ni M; Liu X; Xing L; Wu L; Zhou Z; Li L; Wen J; Huang Y J Control Release; 2024 Jun; 370():152-167. PubMed ID: 38641020 [TBL] [Abstract][Full Text] [Related]
12. Intestinal Mucin Induces More Endocytosis but Less Transcytosis of Nanoparticles across Enterocytes by Triggering Nanoclustering and Strengthening the Retrograde Pathway. Yang D; Liu D; Qin M; Chen B; Song S; Dai W; Zhang H; Wang X; Wang Y; He B; Tang X; Zhang Q ACS Appl Mater Interfaces; 2018 Apr; 10(14):11443-11456. PubMed ID: 29485849 [TBL] [Abstract][Full Text] [Related]
13. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. Rehmani S; McLaughlin CM; Eltaher HM; Moffett RC; Flatt PR; Dixon JE J Control Release; 2023 Aug; 360():93-109. PubMed ID: 37315695 [TBL] [Abstract][Full Text] [Related]
14. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Shan W; Zhu X; Liu M; Li L; Zhong J; Sun W; Zhang Z; Huang Y ACS Nano; 2015 Mar; 9(3):2345-56. PubMed ID: 25658958 [TBL] [Abstract][Full Text] [Related]
16. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems. Bai Y; Zhou R; Wu L; Zheng Y; Liu X; Wu R; Li X; Huang Y J Mater Chem B; 2020 Apr; 8(13):2636-2649. PubMed ID: 32129375 [TBL] [Abstract][Full Text] [Related]
18. Mimicking natural cholesterol assimilation to elevate the oral delivery of liraglutide for type II diabetes therapy. Wu R; Wu Z; Xing L; Liu X; Wu L; Zhou Z; Li L; Huang Y Asian J Pharm Sci; 2022 Aug; 17(5):653-665. PubMed ID: 36382301 [TBL] [Abstract][Full Text] [Related]
19. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Fan W; Xia D; Zhu Q; Li X; He S; Zhu C; Guo S; Hovgaard L; Yang M; Gan Y Biomaterials; 2018 Jan; 151():13-23. PubMed ID: 29055774 [TBL] [Abstract][Full Text] [Related]
20. Transcytosis maintains CFTR apical polarity in the face of constitutive and mutation-induced basolateral missorting. Bidaud-Meynard A; Bossard F; Schnúr A; Fukuda R; Veit G; Xu H; Lukacs GL J Cell Sci; 2019 May; 132(10):. PubMed ID: 30975917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]