These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 32278390)
1. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Tao Y; Luo F; Guo L; Qiu B; Lin Z Anal Chim Acta; 2020 May; 1110():151-157. PubMed ID: 32278390 [TBL] [Abstract][Full Text] [Related]
2. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Zhou W; Hu K; Kwee S; Tang L; Wang Z; Xia J; Li X Anal Chem; 2020 Feb; 92(3):2739-2747. PubMed ID: 31977184 [TBL] [Abstract][Full Text] [Related]
3. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout. Zheng L; Dong W; Zheng C; Shen Y; Zhou R; Wei Z; Chen Z; Lou Y Colloids Surf B Biointerfaces; 2022 Apr; 212():112349. PubMed ID: 35101823 [TBL] [Abstract][Full Text] [Related]
4. Photothermal biosensor for HPV16 based on strand-displacement amplification and gold nanoparticles using a thermometer as readout. Yan B; Li M; Luo F; Jin X; Qiu B; Lin Z Mikrochim Acta; 2022 Nov; 189(11):437. PubMed ID: 36319894 [TBL] [Abstract][Full Text] [Related]
5. Sensitive biosensor for p53 DNA sequence based on the photothermal effect of gold nanoparticles and the signal amplification of locked nucleic acid functionalized DNA walkers using a thermometer as readout. Tao Y; Wang W; Fu C; Luo F; Guo L; Qiu B; Lin Z Talanta; 2020 Dec; 220():121398. PubMed ID: 32928417 [TBL] [Abstract][Full Text] [Related]
6. Portable and quantitative detection of carbendazim based on the readout of a thermometer. Fu R; Zhou J; Liu Y; Wang Y; Liu H; Pang J; Cui Y; Zhao Q; Wang C; Li Z; Jiao B; He Y Food Chem; 2021 Jul; 351():129292. PubMed ID: 33626465 [TBL] [Abstract][Full Text] [Related]
7. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201 [TBL] [Abstract][Full Text] [Related]
8. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Qu F; Sun C; Lv X; You J Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles. Kong C; Gao L; Chen Z Mikrochim Acta; 2018 Oct; 185(10):488. PubMed ID: 30280258 [TBL] [Abstract][Full Text] [Related]
10. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. António M; Ferreira R; Vitorino R; Daniel-da-Silva AL Talanta; 2020 Jul; 214():120868. PubMed ID: 32278414 [TBL] [Abstract][Full Text] [Related]
11. A novel portable biosensor based on aptamer functionalized gold nanoparticles for adenosine detection. Zhou S; Gan Y; Kong L; Sun J; Liang T; Wang X; Wan H; Wang P Anal Chim Acta; 2020 Jul; 1120():43-49. PubMed ID: 32475390 [TBL] [Abstract][Full Text] [Related]
12. Aptamer enzymatic cleavage protection assay for the gold nanoparticle-based colorimetric sensing of small molecules. Guieu V; Ravelet C; Perrier S; Zhu Z; Cayez S; Peyrin E Anal Chim Acta; 2011 Nov; 706(2):349-53. PubMed ID: 22023872 [TBL] [Abstract][Full Text] [Related]
13. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles. Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182 [TBL] [Abstract][Full Text] [Related]
14. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. Sang F; Zhang X; Liu J; Yin S; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():122-127. PubMed ID: 30928837 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Ma X; Guo Z; Mao Z; Tang Y; Miao P Mikrochim Acta; 2017 Dec; 185(1):33. PubMed ID: 29594625 [TBL] [Abstract][Full Text] [Related]
16. Photothermal immunoassay for carcinoembryonic antigen based on the inhibition of cysteine-induced aggregation of gold nanoparticles by copper ion using a common thermometer as readout. Tao Y; Shi W; Luo F; Qiu B; Lin Z Anal Chim Acta; 2021 Oct; 1181():338929. PubMed ID: 34556217 [TBL] [Abstract][Full Text] [Related]
17. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay. Cheng F; He Y; Xing XJ; Tan DD; Lin Y; Pang DW; Tang HW Analyst; 2015 Mar; 140(5):1572-7. PubMed ID: 25597304 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric and photothermal dual readout biosensor for flap endonuclease 1 based on target-prevented gold nanoparticles aggregation. Li X; Yang X; Zhuo S; Lin Z; Chen J Talanta; 2024 Jan; 266(Pt 1):125003. PubMed ID: 37531885 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles. Jiao Y; Liu Q; Qiang H; Chen Z Mikrochim Acta; 2018 Sep; 185(10):452. PubMed ID: 30209628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]