BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32278504)

  • 1. New Cognitive Neurotechnology Facilitates Studies of Cortical-Subcortical Interactions.
    Min BK; Hämäläinen MS; Pantazis D
    Trends Biotechnol; 2020 Sep; 38(9):952-962. PubMed ID: 32278504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detectability of cerebellar activity with magnetoencephalography and electroencephalography.
    Samuelsson JG; Sundaram P; Khan S; Sereno MI; Hämäläinen MS
    Hum Brain Mapp; 2020 Jun; 41(9):2357-2372. PubMed ID: 32115870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG.
    Krishnaswamy P; Obregon-Henao G; Ahveninen J; Khan S; Babadi B; Iglesias JE; Hämäläinen MS; Purdon PL
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):E10465-E10474. PubMed ID: 29138310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical Signal Suppression (CSS) for Detection of Subcortical Activity Using MEG and EEG.
    Samuelsson JG; Khan S; Sundaram P; Peled N; Hämäläinen MS
    Brain Topogr; 2019 Mar; 32(2):215-228. PubMed ID: 30604048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources.
    Piastra MC; Nüßing A; Vorwerk J; Clerc M; Engwer C; Wolters CH
    Hum Brain Mapp; 2021 Mar; 42(4):978-992. PubMed ID: 33156569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG and MEG: relevance to neuroscience.
    Lopes da Silva F
    Neuron; 2013 Dec; 80(5):1112-28. PubMed ID: 24314724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEG and TMS combined with EEG for mapping alcohol effects.
    Kähkönen S
    Alcohol; 2005 Nov; 37(3):129-33. PubMed ID: 16713500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging.
    Babiloni C; Pizzella V; Gratta CD; Ferretti A; Romani GL
    Int Rev Neurobiol; 2009; 86():67-80. PubMed ID: 19607991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoencephalography can reveal deep brain network activities linked to memory processes.
    López-Madrona VJ; Medina Villalon S; Badier JM; Trébuchon A; Jayabal V; Bartolomei F; Carron R; Barborica A; Vulliémoz S; Alario FX; Bénar CG
    Hum Brain Mapp; 2022 Oct; 43(15):4733-4749. PubMed ID: 35766240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head models and dynamic causal modeling of subcortical activity using magnetoencephalographic/electroencephalographic data.
    Attal Y; Maess B; Friederici A; David O
    Rev Neurosci; 2012; 23(1):85-95. PubMed ID: 22718615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuro-current response functions: A unified approach to MEG source analysis under the continuous stimuli paradigm.
    Das P; Brodbeck C; Simon JZ; Babadi B
    Neuroimage; 2020 May; 211():116528. PubMed ID: 31945510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can EEG and MEG detect signals from the human cerebellum?
    Andersen LM; Jerbi K; Dalal SS
    Neuroimage; 2020 Jul; 215():116817. PubMed ID: 32278092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional magnetic resonance imaging blood oxygenation level-dependent signal and magnetoencephalography evoked responses yield different neural functionality in reading.
    Vartiainen J; Liljeström M; Koskinen M; Renvall H; Salmelin R
    J Neurosci; 2011 Jan; 31(3):1048-58. PubMed ID: 21248130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.
    Dubarry AS; Badier JM; Trébuchon-Da Fonseca A; Gavaret M; Carron R; Bartolomei F; Liégeois-Chauvel C; Régis J; Chauvel P; Alario FX; Bénar CG
    Neuroimage; 2014 Oct; 99():548-58. PubMed ID: 24862073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions.
    Beppi C; Ribeiro Violante I; Scott G; Sandrone S
    Brain Cogn; 2021 Mar; 148():105677. PubMed ID: 33486194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.
    Bénar CG; Grova C; Jirsa VK; Lina JM
    J Comput Neurosci; 2019 Aug; 47(1):31-41. PubMed ID: 31292816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of the neuronal networks of human cortical brain functions.
    Momjian S; Seghier M; Seeck M; Michel CM
    Adv Tech Stand Neurosurg; 2003; 28():91-142. PubMed ID: 12627809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperedge bundling: A practical solution to spurious interactions in MEG/EEG source connectivity analyses.
    Wang SH; Lobier M; Siebenhühner F; Puoliväli T; Palva S; Palva JM
    Neuroimage; 2018 Jun; 173():610-622. PubMed ID: 29378318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.