These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32278906)

  • 41. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater.
    Obaja D; Macé S; Mata-Alvarez J
    Bioresour Technol; 2005 Jan; 96(1):7-14. PubMed ID: 15364074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor].
    Song XY; Liu R; Shui Y; Kawagishi T; Zhan XM; Chen LJ
    Huan Jing Ke Xue; 2016 May; 37(5):1873-9. PubMed ID: 27506043
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cultivation of Chlorella vulgaris in manure-free piggery wastewater with high-strength ammonium for nutrients removal and biomass production: Effect of ammonium concentration, carbon/nitrogen ratio and pH.
    Zheng H; Wu X; Zou G; Zhou T; Liu Y; Ruan R
    Bioresour Technol; 2019 Feb; 273():203-211. PubMed ID: 30447621
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Principles, challenges, and optimization of indigenous microalgae-bacteria consortium for sustainable swine wastewater treatment.
    Yu S; Chen Z; Li M; Qiu S; Lv Z; Ge S
    Bioresour Technol; 2024 Aug; 406():131055. PubMed ID: 38944316
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae.
    Wang M; Yang Y; Chen Z; Chen Y; Wen Y; Chen B
    Bioresour Technol; 2016 Dec; 222():130-138. PubMed ID: 27718397
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic comparison on the usage of probiotics in organic wastewater treatment under aerobic conditions in a diurnal environment.
    Liu J; Liu Y; Li G; Shen J; Tao Z; Tian Y; Chen L; Li C; Lu L
    J Air Waste Manag Assoc; 2016 Dec; 66(12):1183-1190. PubMed ID: 26934597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light intensity defines growth and photopigment content of a mixed culture of purple phototrophic bacteria.
    Cerruti M; Kim JH; Pabst M; Van Loosdrecht MCM; Weissbrodt DG
    Front Microbiol; 2022; 13():1014695. PubMed ID: 36338071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Removing nitrogen from low-C/N-piggery-wastewater using shortcut nitrification/denitrification-ANAMMOX].
    Wang H; Pei WZ; Li XD; Hao C; Zeng KM
    Huan Jing Ke Xue; 2009 Mar; 30(3):815-21. PubMed ID: 19432334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells.
    Lin H; Wu X; Nelson C; Miller C; Zhu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(3):240-50. PubMed ID: 26654000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of seed sludge on nitrogen removal in a novel upflow microaerobic sludge reactor for treating piggery wastewater.
    Meng J; Li J; Li J; Wang C; Deng K; Sun K
    Bioresour Technol; 2016 Sep; 216():19-27. PubMed ID: 27218438
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment.
    Zhu L; Wang Z; Shu Q; Takala J; Hiltunen E; Feng P; Yuan Z
    Water Res; 2013 Sep; 47(13):4294-302. PubMed ID: 23764580
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures.
    Almeida JR; Serrano E; Fernandez M; Fradinho JC; Oehmen A; Reis MAM
    Water Res; 2021 Jun; 197():117101. PubMed ID: 33857894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance and nitrogen removal mechanism in a novel aerobic-microaerobic combined process treating manure-free piggery wastewater.
    Tian Y; Li J; Fan Y; Li J; Meng J
    Bioresour Technol; 2022 Feb; 345():126494. PubMed ID: 34883191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Municipal wastewater treatment by purple phototropic bacteria at low infrared irradiances using a photo-anaerobic membrane bioreactor.
    Dalaei P; Bahreini G; Nakhla G; Santoro D; Batstone D; Hülsen T
    Water Res; 2020 Apr; 173():115535. PubMed ID: 32014703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced nitrogen removal using C/N load adjustment and real-time control strategy in sequencing batch reactors for swine wastewater treatment.
    Chen M; Kim JH; Kishida N; Nishimura O; Sudo R
    Water Sci Technol; 2004; 49(5-6):309-14. PubMed ID: 15137439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Pilot-scale cultivation of Spirulina plantensis with digested piggery wastewater ].
    Guo QQ; Liu R; Luo JF; Wang GR; Chen LJ; Liu X
    Huan Jing Ke Xue; 2014 Sep; 35(9):3480-6. PubMed ID: 25518669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Research on the isolation of denitrifying bacteria from domestic wastewater and its capability of removing nutrient salt from eutrophic water body].
    Wang L; Li J; Guo T; Qin M
    Wei Sheng Yan Jiu; 2012 Mar; 41(2):279-82. PubMed ID: 22611941
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation of purple bacteria in an upflow photobioreactor to facilitate solid/liquid separation: Impact of organic loading rate, hydraulic retention time and water composition.
    Blansaer N; Alloul A; Verstraete W; Vlaeminck SE; Smets BF
    Bioresour Technol; 2022 Mar; 348():126806. PubMed ID: 35131464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.