These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32278951)

  • 21. Interaction of negatively and positively capped gold nanoparticle with different lipid model membranes.
    Sheridan AJ; Thompson KC; Slater JM
    Biophys Chem; 2022 Nov; 290():106896. PubMed ID: 36162346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium.
    Šegota S; Vojta D; Kendziora D; Ahmed I; Fruk L; Baranović G
    J Phys Chem B; 2015 Apr; 119(16):5208-19. PubMed ID: 25831116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monovalent and Oriented Labeling of Gold Nanoprobes for the High-Resolution Tracking of a Single-Membrane Molecule.
    Liao YH; Lin CH; Cheng CY; Wong WC; Juo JY; Hsieh CL
    ACS Nano; 2019 Oct; 13(10):10918-10928. PubMed ID: 31259529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization: towards bio-multifunctional sensors.
    Veneziano R; Derrien G; Tan S; Brisson A; Devoisselle JM; Chopineau J; Charnay C
    Small; 2012 Dec; 8(23):3674-82. PubMed ID: 22969002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid bilayer templated gold nanoparticles nanoring formation using zirconium ion coordination chemistry.
    Xiao X; Montaño GA; Allen A; Achyuthan KE; Wheeler DR; Brozik SM
    Langmuir; 2011 Aug; 27(15):9484-9. PubMed ID: 21699157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.
    Gupta R; Rai B
    Sci Rep; 2017 Mar; 7():45292. PubMed ID: 28349970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of nanoparticles with lipid membranes: a multiscale perspective.
    Montis C; Maiolo D; Alessandri I; Bergese P; Berti D
    Nanoscale; 2014 Jun; 6(12):6452-7. PubMed ID: 24807475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly.
    Stobiecka M; Coopersmith K; Hepel M
    J Colloid Interface Sci; 2010 Oct; 350(1):168-77. PubMed ID: 20591439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Au-Nanoparticle-Embedded Lipid Bilayer Membranes Supported on Solid Substrates.
    Sakaguchi N; Kimura Y; Hirano-Iwata A; Ogino T
    J Phys Chem B; 2017 May; 121(17):4474-4481. PubMed ID: 28414450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods.
    Kılıç A; Fazeli Jadidi M; Özer HÖ; Kök FN
    Colloids Surf B Biointerfaces; 2017 Dec; 160():117-125. PubMed ID: 28918188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship.
    Lin J; Zhang H; Chen Z; Zheng Y
    ACS Nano; 2010 Sep; 4(9):5421-9. PubMed ID: 20799717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface.
    Stobiecka M; Hepel M
    Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation of Polyunsaturated Lipid Membranes by Photocatalytic Titanium Dioxide Nanoparticles: Role of pH and Salinity.
    Parra-Ortiz E; Malekkhaiat Häffner S; Saerbeck T; Skoda MWA; Browning KL; Malmsten M
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32446-32460. PubMed ID: 32589394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X; Zhao D; Zhou J
    Phys Chem Chem Phys; 2021 Oct; 23(41):23526-23536. PubMed ID: 34642720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.