These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32279032)

  • 1. A novel method for optimization of slit Venturi dimensions through CFD simulation and RSM design.
    Abbasi E; Saadat S; Karimi Jashni A; Shafaei MH
    Ultrason Sonochem; 2020 Oct; 67():105088. PubMed ID: 32279032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and optimization of a cavitating device for Congo red decolorization: Experimental investigation and CFD simulation.
    Abbas-Shiroodi Z; Sadeghi MT; Baradaran S
    Ultrason Sonochem; 2021 Mar; 71():105386. PubMed ID: 33232898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment.
    Bimestre TA; Júnior JAM; Botura CA; Canettieri E; Tuna CE
    Bioresour Technol; 2020 Sep; 311():123540. PubMed ID: 32446231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of geometry of hydrodynamically cavitating device on degradation of orange-G.
    Saharan VK; Rizwani MA; Malani AA; Pandit AB
    Ultrason Sonochem; 2013 Jan; 20(1):345-53. PubMed ID: 22982006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jul; 37():192-202. PubMed ID: 28427623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges of numerical simulations of cavitation reactors for water treatment - An example of flow simulation inside a cavitating microchannel.
    Pipp P; Hočevar M; Dular M
    Ultrason Sonochem; 2021 Sep; 77():105663. PubMed ID: 34298308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of a Cavitating Spoiler Mixing Device and Its Performance in a Foam Dust Suppression System.
    Yang H; Zhu X; Hu R; Zhang K; Xu C; Wang Q; Wang H
    ACS Omega; 2022 Aug; 7(34):29886-29900. PubMed ID: 36061727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number.
    Soyama H
    Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel strategies to enhance hydrodynamic cavitation in a circular venturi using RANS numerical simulations.
    Dutta N; Kopparthi P; Mukherjee AK; Nirmalkar N; Boczkaj G
    Water Res; 2021 Oct; 204():117559. PubMed ID: 34496315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using CFD simulations to investigate the shear stress in hydrodynamic cavitation reactors coupled with experimental validation using colony count measurements.
    Polgár M; Agarwal C; Gogate P; Németh G; Csóka L
    Sci Rep; 2022 Oct; 12(1):18034. PubMed ID: 36302786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.
    Raut-Jadhav S; Saini D; Sonawane S; Pandit A
    Ultrason Sonochem; 2016 Jan; 28():283-293. PubMed ID: 26384910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD-assisted modeling of the hydrodynamic cavitation reactors for wastewater treatment - A review.
    Hong F; Tian H; Yuan X; Liu S; Peng Q; Shi Y; Jin L; Ye L; Jia J; Ying D; Ramsey TS; Huang Y
    J Environ Manage; 2022 Nov; 321():115982. PubMed ID: 36104886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor.
    Xu S; Wang J; Cheng H; Ji B; Long X
    Ultrason Sonochem; 2020 Oct; 67():105183. PubMed ID: 32474184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depolymerization of carboxymethyl cellulose using hydrodynamic cavitation combined with ultraviolet irradiation and potassium persulfate.
    Prajapat AL; Gogate PR
    Ultrason Sonochem; 2019 Mar; 51():258-263. PubMed ID: 30322765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimising the computational domain size in CFD simulations of tall buildings.
    Abu-Zidan Y; Mendis P; Gunawardena T
    Heliyon; 2021 Apr; 7(4):e06723. PubMed ID: 33912709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CFD simulation of a novel bileaflet mechanical heart valve prosthesis: an estimation of the Venturi passage formed by the leaflets.
    Yokoyama Y; Medart D; Hormes M; Schmitz C; Hamilton K; Kwant PB; Takatani S; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2006 Dec; 29(12):1132-9. PubMed ID: 17219353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe
    Li G; Yi L; Wang J; Song Y
    Ultrason Sonochem; 2020 Jan; 60():104806. PubMed ID: 31563794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.