These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 3227915)
1. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings. Björnberg J; Grände PO; Maspers M; Mellander S Acta Physiol Scand; 1988 Jun; 133(2):199-210. PubMed ID: 3227915 [TBL] [Abstract][Full Text] [Related]
2. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Mellander S; Maspers M; Björnberg J; Andersson LO Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809 [TBL] [Abstract][Full Text] [Related]
3. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise. Björnberg J; Maspers M; Mellander S Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003 [TBL] [Abstract][Full Text] [Related]
4. Sympathetic alpha-adrenergic control of large-bore arterial vessels, arterioles and veins, and of capillary pressure and fluid exchange in whole-organ cat skeletal muscle. Maspers M; Björnberg J; Grände PO; Mellander S Acta Physiol Scand; 1990 Apr; 138(4):509-21. PubMed ID: 2353580 [TBL] [Abstract][Full Text] [Related]
5. Method for continuous recording of hydrostatic exchange vessel pressure in cat skeletal muscle. Mellander S; Björnberg J; Maspers M; Myrhage R Acta Physiol Scand; 1987 Mar; 129(3):325-35. PubMed ID: 3577819 [TBL] [Abstract][Full Text] [Related]
6. Beta 2-adrenergic attenuation of capillary pressure autoregulation during haemorrhagic hypotension, a mechanism promoting transcapillary fluid absorption in skeletal muscle. Maspers M; Björnberg J Acta Physiol Scand; 1991 May; 142(1):11-20. PubMed ID: 1678909 [TBL] [Abstract][Full Text] [Related]
7. Resistance responses in proximal arterial vessels, arterioles and veins during reactive hyperaemia in skeletal muscle and their underlying regulatory mechanisms. Björnberg J; Albert U; Mellander S Acta Physiol Scand; 1990 Aug; 139(4):535-50. PubMed ID: 2248033 [TBL] [Abstract][Full Text] [Related]
8. Myogenic mechanisms in the skeletal muscle circulation. Grände PO J Hypertens Suppl; 1989 Sep; 7(4):S47-53. PubMed ID: 2809807 [TBL] [Abstract][Full Text] [Related]
9. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle. Ekelund U; Albert U; Edvinsson L; Mellander S Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182 [TBL] [Abstract][Full Text] [Related]
10. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle. Ekelund U Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123 [TBL] [Abstract][Full Text] [Related]
11. In vivo receptor characterization of neuropeptide Y-induced effects in consecutive vascular sections of cat skeletal muscle. Ekelund U; Erlinge D Br J Pharmacol; 1997 Feb; 120(3):387-92. PubMed ID: 9031740 [TBL] [Abstract][Full Text] [Related]
12. Relation between capillary pressure and vascular tone over the range from maximum dilatation to maximum constriction in cat skeletal muscle. Maspers M; Björnberg J; Mellander S Acta Physiol Scand; 1990 Sep; 140(1):73-83. PubMed ID: 2275407 [TBL] [Abstract][Full Text] [Related]
13. On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli. Grände PO; Borgström P; Mellander S Acta Physiol Scand; 1979 Dec; 107(4):365-76. PubMed ID: 44427 [TBL] [Abstract][Full Text] [Related]
14. Effects of angiotensin-converting enzyme inhibition on arterial, venous and capillary functions in cat skeletal muscle in vivo. Ekelund U Acta Physiol Scand; 1996 Sep; 158(1):29-37. PubMed ID: 8876745 [TBL] [Abstract][Full Text] [Related]
15. Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Borgström P; Gestrelius S Microvasc Res; 1987 May; 33(3):353-76. PubMed ID: 3613984 [TBL] [Abstract][Full Text] [Related]
17. Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration. Maspers M; Ekelund U; Björnberg J; Mellander S Acta Physiol Scand; 1991 Mar; 141(3):351-61. PubMed ID: 1858506 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a rate-sensitive regulatory mechanism in myogenic microvascular control. Grände PO; Lundvall J; Mellander S Acta Physiol Scand; 1977 Apr; 99(4):432-47. PubMed ID: 857611 [TBL] [Abstract][Full Text] [Related]
19. Autoregulation of intestinal blood flow: physiology and pathophysiology. Lundgren O J Hypertens Suppl; 1989 Sep; 7(4):S79-84. PubMed ID: 2681600 [TBL] [Abstract][Full Text] [Related]
20. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit. Lindbom L Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]