These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32279498)

  • 1. Programmable Synthesis of Multimetallic Phosphide Nanorods Mediated by Core/Shell Structure Formation and Conversion.
    Zhang Y; Li N; Zhang Z; Li S; Cui M; Ma L; Zhou H; Su D; Zhang S
    J Am Chem Soc; 2020 May; 142(18):8490-8497. PubMed ID: 32279498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Favorable Core/Shell Interface within Co
    Liu C; Ma Z; Cui M; Zhang Z; Zhang X; Su D; Murray CB; Wang JX; Zhang S
    Nano Lett; 2018 Dec; 18(12):7870-7875. PubMed ID: 30427689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies.
    Wu ZP; Shan S; Zang SQ; Zhong CJ
    Acc Chem Res; 2020 Dec; 53(12):2913-2924. PubMed ID: 33170638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction.
    Zhu H; Zhang S; Guo S; Su D; Sun S
    J Am Chem Soc; 2013 May; 135(19):7130-3. PubMed ID: 23634823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO
    Zhang Z; Wu Q; Johnson G; Ye Y; Li X; Li N; Cui M; Lee JD; Liu C; Zhao S; Li S; Orlov A; Murray CB; Zhang X; Gunnoe TB; Su D; Zhang S
    J Am Chem Soc; 2019 Oct; 141(42):16548-16552. PubMed ID: 31535853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction.
    Manso RH; Acharya P; Deng S; Crane CC; Reinhart B; Lee S; Tong X; Nykypanchuk D; Zhu J; Zhu Y; Greenlee LF; Chen J
    Nanoscale; 2019 Apr; 11(17):8170-8184. PubMed ID: 30775739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Doping Effect of the M-Co2P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts.
    Pan Y; Liu Y; Lin Y; Liu C
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13890-901. PubMed ID: 27197546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iridium-Based Multimetallic Nanoframe@Nanoframe Structure: An Efficient and Robust Electrocatalyst toward Oxygen Evolution Reaction.
    Park J; Sa YJ; Baik H; Kwon T; Joo SH; Lee K
    ACS Nano; 2017 Jun; 11(6):5500-5509. PubMed ID: 28599106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimetallic Hollow Mesoporous Nanospheres with Synergistically Structural and Compositional Effects for Highly Efficient Ethanol Electrooxidation.
    Lv H; Lopes A; Xu D; Liu B
    ACS Cent Sci; 2018 Oct; 4(10):1412-1419. PubMed ID: 30410979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimetallic alloy nanotubes with nanoporous framework.
    Choi BS; Lee YW; Kang SW; Hong JW; Kim J; Park I; Han SW
    ACS Nano; 2012 Jun; 6(6):5659-67. PubMed ID: 22612234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ni@Ru and NiCo@Ru Core-Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell.
    Hwang H; Kwon T; Kim HY; Park J; Oh A; Kim B; Baik H; Joo SH; Lee K
    Small; 2018 Jan; 14(3):. PubMed ID: 29171686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile solution-phase synthesis of cobalt phosphide nanorods/hollow nanoparticles.
    Yang W; Huang Y; Fan J; Yu Y; Yang C; Li H
    Nanoscale; 2016 Mar; 8(9):4898-902. PubMed ID: 26876515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions.
    Kapuria N; Conroy M; Lebedev VA; Adegoke TE; Zhang Y; Amiinu IS; Bangert U; Cabot A; Singh S; Ryan KM
    ACS Nano; 2022 Jun; 16(6):8917-8927. PubMed ID: 35593407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.
    Yang Y; Wang K; Liang HW; Liu GQ; Feng M; Xu L; Liu JW; Wang JL; Yu SH
    Sci Adv; 2015 Nov; 1(10):e1500714. PubMed ID: 26601137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and X-ray Characterization of Cobalt Phosphide (Co2P) Nanorods for the Oxygen Reduction Reaction.
    Doan-Nguyen VV; Zhang S; Trigg EB; Agarwal R; Li J; Su D; Winey KI; Murray CB
    ACS Nano; 2015 Aug; 9(8):8108-15. PubMed ID: 26171574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline structure-dependent growth of bimetallic nanostructures.
    Li Q; Jiang R; Ming T; Fang C; Wang J
    Nanoscale; 2012 Nov; 4(22):7070-7. PubMed ID: 23064156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Control Enables Catalytic and Electrocatalytic Activity of Porous Tetrametallic Nanorods.
    Zámbó D; Kovács D; Radnóczi G; Horváth ZE; Sulyok A; Tolnai I; Deák A
    Small; 2024 Aug; 20(31):e2400421. PubMed ID: 38431934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis and magnetic properties of iron-cobalt-phosphide nanorods.
    Yang W; Wu X; Yu Y; Yang C; Xu S; Li H
    Nanoscale; 2016 Sep; 8(36):16187-91. PubMed ID: 27602987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction.
    Fan Z; Luo Z; Huang X; Li B; Chen Y; Wang J; Hu Y; Zhang H
    J Am Chem Soc; 2016 Feb; 138(4):1414-9. PubMed ID: 26752521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.