These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32279626)

  • 1. Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing.
    Kao A; Gan T; Tonry C; Krastins I; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190249. PubMed ID: 32279626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites.
    Kao A; Gao J; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-field simulation of microstructure evolution in electron beam additive manufacturing.
    Chu S; Guo C; Zhang T; Wang Y; Li J; Wang Z; Wang J; Qian Y; Zhao H
    Eur Phys J E Soft Matter; 2020 Jun; 43(6):35. PubMed ID: 32524314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing.
    Ren N; Li J; Zhang R; Panwisawas C; Xia M; Dong H; Li J
    Nat Commun; 2023 Dec; 14(1):7990. PubMed ID: 38042908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Base Plate Preheating Effect on Microstructure of 316L Stainless Steel Single Track Deposition by Directed Energy Deposition.
    Kiran A; Koukolíková M; Vavřík J; Urbánek M; Džugan J
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Impact of Substrate Preheating on the Thermal Flow and Microstructure of Laser Cladding of Nickel-Based Superalloy.
    Jin Z; Kong X; Ma L
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns in soft and biological matters.
    Alexandrov DV; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20200002. PubMed ID: 32279637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure Evolution and Mechanical Properties of Melt Spun Skutterudite-based Thermoelectric Materials.
    Geng H; Zhang J; He T; Zhang L; Feng J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat Source Modeling in Selective Laser Melting.
    Mirkoohi E; Seivers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of Continuous Melting and Secondary Contact Melting in Resistance Heating Metal Wire Additive Manufacturing.
    Yuan C; Chen S; Jiang F; Xu B; Dong S
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing.
    Tumkur TU; Voisin T; Shi R; Depond PJ; Roehling TT; Wu S; Crumb MF; Roehling JD; Guss G; Khairallah SA; Matthews MJ
    Sci Adv; 2021 Sep; 7(38):eabg9358. PubMed ID: 34524849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical look at the prediction of the temperature field around a laser-induced melt pool on metallic substrates.
    Shu Y; Galles D; Tertuliano OA; McWilliams BA; Yang N; Cai W; Lew AJ
    Sci Rep; 2021 Jun; 11(1):12224. PubMed ID: 34108495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting concurrent structural mechanical mechanisms during microstructure evolution.
    Soar P; Kao A; Shevchenko N; Eckert S; Djambazov G; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2217):20210149. PubMed ID: 34974718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing.
    Leung CLA; Marussi S; Atwood RC; Towrie M; Withers PJ; Lee PD
    Nat Commun; 2018 Apr; 9(1):1355. PubMed ID: 29636443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observation of melt pool evolution in ultrasonic vibration-assisted directed energy deposition.
    El-Azab SA; Zhang C; Jiang S; Vyatskikh AL; Valdevit L; Lavernia EJ; Schoenung JM
    Sci Rep; 2023 Oct; 13(1):17705. PubMed ID: 37848463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulation on Thermal Stresses and Solidification Microstructure for Making Fiber-Reinforced Aluminum Matrix Composites.
    Xing C; Etemadi R; Pillai KM; Wang Q; Wang B
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach.
    Ansari Dezfoli AR; Lo YL; Raza MM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances and Challenges in Predictive Modeling for Additive Manufacturing of Dissimilar Metals and Complex Alloys.
    Adak D; Sreeramagiri P; Roy S; Balasubramanian G
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Parallel Cellular Automata Lattice Boltzmann Method for Convection-Driven Solidification.
    Kao A; Krastins I; Alexandrakis M; Shevchenko N; Eckert S; Pericleous K
    JOM (1989); 2019; 71(1):48-58. PubMed ID: 30880880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.