These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32279629)

  • 1. Stochastic phenomena in pattern formation for distributed nonlinear systems.
    Kolinichenko AP; Pisarchik AN; Ryashko LB
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190252. PubMed ID: 32279629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructive role of noise and diffusion in an excitable slow-fast population system.
    Bashkirtseva I; Pankratov A; Slepukhina E; Tsvetkov I
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190253. PubMed ID: 32279634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-induced temporal dynamics in Turing systems.
    Schumacher LJ; Woolley TE; Baker RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042719. PubMed ID: 23679461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern formation from spatially heterogeneous reaction-diffusion systems.
    Van Gorder RA
    Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2213):20210001. PubMed ID: 34743604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-induced formation of heterogeneous patterns in the Turing stability zones of diffusion systems.
    Bashkirtseva I; Pankratov A; Ryashko L
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 36001986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns in soft and biological matters.
    Alexandrov DV; Zubarev AY
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20200002. PubMed ID: 32279637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instabilities and self-organization in spatiotemporal epidemic dynamics driven by nonlinearity and noise.
    Singh AK; Ramakrishnan S; Kumar M
    Phys Biol; 2024 Jul; 21(4):. PubMed ID: 38949432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model.
    Banerjee M; Banerjee S
    Math Biosci; 2012 Mar; 236(1):64-76. PubMed ID: 22207074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Turing patterns in a synthetic bacterial population.
    Karig D; Martini KM; Lu T; DeLateur NA; Goldenfeld N; Weiss R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6572-6577. PubMed ID: 29891706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic Turing Pattern Formation in a Model with Active and Passive Transport.
    Kim H; Bressloff PC
    Bull Math Biol; 2020 Nov; 82(11):144. PubMed ID: 33159598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ.
    Krause AL; Klika V; Woolley TE; Gaffney EA
    J R Soc Interface; 2020 Jan; 17(162):20190621. PubMed ID: 31937231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuations-induced coexistence in public goods dynamics.
    Behar H; Brenner N; Ariel G; Louzoun Y
    Phys Biol; 2016 Oct; 13(5):056006. PubMed ID: 27754974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of self-adjusting systems with noise.
    Melby P; Weber N; Hübler A
    Chaos; 2005 Sep; 15(3):33902. PubMed ID: 16252993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying network topologies that can generate turing pattern.
    Zheng MM; Shao B; Ouyang Q
    J Theor Biol; 2016 Nov; 408():88-96. PubMed ID: 27519949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient dynamics and pattern formation: reactivity is necessary for Turing instabilities.
    Neubert MG; Caswell H; Murray JD
    Math Biosci; 2002 Jan; 175(1):1-11. PubMed ID: 11779624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources.
    Zhou Z; Van Gorder RA
    Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.