These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32279640)

  • 21. Influence of flocculation and coalescence on the evolution of the average radius of an O/W emulsion. Is a linear slope of R3 vs. t an unmistakable signature of Ostwald ripening?
    Urbina-Villalba G; Forgiarini A; Rahn K; Lozsán A
    Phys Chem Chem Phys; 2009 Dec; 11(47):11184-95. PubMed ID: 20024387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluctuations provide strong selection in Ostwald ripening.
    Meerson B
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3072-5. PubMed ID: 11970114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissolution of polydisperse ensembles of crystals in channels with a forced flow.
    Ivanov AA; Alexandrov DV; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190246. PubMed ID: 32279642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Mg Treatment on the Nucleation and Ostwald Growth of Inclusions in Fe-O-Al-Mg Melt.
    Li Y; Wang L; Chen C; Li J; Li X
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32731578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonmonotonic dynamics in Lifshitz-Slyozov-Wagner theory: Ostwald ripening in nanoparticle catalysts.
    Rinaldo SG; Lee W; Stumper J; Eikerling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041601. PubMed ID: 23214593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ostwald-ripening and particle size focussing of sub-10 nm NaYF₄ upconversion nanocrystals.
    Rinkel T; Nordmann J; Raj AN; Haase M
    Nanoscale; 2014 Nov; 6(23):14523-30. PubMed ID: 25347027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation.
    Alexandrov DV; Ivanov AA; Alexandrova IV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early stages of Ostwald ripening.
    Shneidman VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):010401. PubMed ID: 23944392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of interfacial rheological properties on Ostwald ripening in emulsions.
    Meinders MB; van Vliet T
    Adv Colloid Interface Sci; 2004 May; 108-109():119-26. PubMed ID: 15072934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanochemical synthesis of PbTe nanostructures: following the Ostwald ripening effect during milling.
    Rojas-Chávez H; Cruz-Martínez H; Flores-Rojas E; Juárez-García JM; González-Domínguez JL; Daneu N; Santoyo-Salazar J
    Phys Chem Chem Phys; 2018 Oct; 20(42):27082-27092. PubMed ID: 30328855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals.
    Makoveeva EV; Alexandrov DV
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissolution and coarsening of polydisperse, polymorph drug particles liberated from a disintegrating finished dosage form: Theoretical considerations.
    Horkovics-Kovats S
    Eur J Pharm Sci; 2016 Aug; 91():265-77. PubMed ID: 27155254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ostwald ripening of beta-carotene nanoparticles.
    Liu Y; Kathan K; Saad W; Prud'homme RK
    Phys Rev Lett; 2007 Jan; 98(3):036102. PubMed ID: 17358697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening.
    Verma S; Kumar S; Gokhale R; Burgess DJ
    Int J Pharm; 2011 Mar; 406(1-2):145-52. PubMed ID: 21185926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ostwald ripening of confined nanoparticles: chemomechanical coupling in nanopores.
    Gommes CJ
    Nanoscale; 2019 Apr; 11(15):7386-7393. PubMed ID: 30938749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.
    Chung SY; Kim YM; Choi SY; Kim JG
    ACS Nano; 2015 Jan; 9(1):327-35. PubMed ID: 25588182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice-Boltzmann simulation of coalescence-driven island coarsening.
    Başağaoğlu H; Green CT; Meakin P; McCoy BJ
    J Chem Phys; 2004 Oct; 121(16):7987-95. PubMed ID: 15485261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late-stage coarsening of an unstable structured liquid film.
    Limary R; Green PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021601. PubMed ID: 12241183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth mechanisms of amorphous nanoparticles in solution and during heat drying.
    Narula A; Yang DH; Chakravarty P; Li N
    J Pharm Sci; 2025 Jan; 114(1):210-222. PubMed ID: 39186979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.